
SSD的技术特点

Page:最小读写单位4KB       （其实在读写时也是整个Block进行操作）
Block：最小的擦除编程单位  256*Page=256*4KB=1MB

Plane:2048*Block=2048MB=2G

Die:2*Plane=2*2GB=4GB  (最小的芯片单位)
SSD与传统磁盘相比，第一是没有机械装置，第二是由磁介质改为了电介质。在SSD内部有一个FTL(Flash Transalation Layer)，它相当于磁盘中的控制器，主要功能就是作地址映射，将flash memory的物理地址映射为磁盘的LBA逻辑地址，并提供给OS作透明访问。

SSD没有传统磁盘的寻道时间和延迟时间，所以SSD可以提供非常高的随机读取能力，这是它的最大优势，SLC类型的SSD通常可以提供超过35000的IOPS，传统15k的SAS磁盘，最多也只能达到160个IOPS，这对于传统磁盘来说几乎就是个天文数字。SSD连续读的能力相比普通磁盘优势并不明显，因为连续读对于传统磁盘来说，并不需要寻道时间，15k的SAS磁盘，连续读的吞吐能力可以达到130MB，而SLC类型的SSD可以达到170-200MB，我们看到在吞吐量方面，SSD虽然比传统磁盘高一些，但优势虽然并不明显。
SSD的写操作比较特殊，SSD的最小写入单元为4KB，称为页(page)，当写入空白位置时可以按照4KB的单位写入，但是如果需要改写某个单元时，则需要一个额外的擦除（erase）动作，擦除的单位一般是128个page（512KB），每个擦除单元称为块（block）。如果向一个空白的page写入信息时，可以直接写入而无需擦除，但是如果需要改写某个存储单元（page）的数据，必须首先将整个block读入缓存，然后修改数据，并擦除整个block的数据，最后将整个block写入，很显然，SSD改写数据的代价很高，SSD的这个特性，我们称之为erase-before-write。

经过测试，SLC SSD的随即写性能可以达到3000个左右的IOPS，连续写的吞吐量可以达到170-200MB，这个数据还是比传统磁盘高出不少。但是，随着SSD的不断写入，当越来越多的数据需要被改写时，写的性能就会逐步下降。经过我们的测试，SLC在这个方面要明显好于MLC，在长时间写入后，MLC随机写IO下降得非常厉害，而SLC表现则比较稳定。为了解决这个问题，各个厂商都有很多策略来防止写性能下降的问题。

NOR和NAND

NOR和NAND都是闪存技术的一种，NOR是Intel公司开发的，它有点类似于内存，允许通过地址直接访问任何一个内存单元，缺点是：密度低（容量小），写入和擦除的速度很慢。NAND是东芝公司开发的，它密度高（容量大），写入和擦除的速度都很快，但是必须通过特定的IO接口经过地址转换之后才可以访问，有些类似于磁盘。

我们现在广泛使用的U盘，SD卡，SSD都属于NAND类型，厂商将flash memory封装成为不同的接口，比如Intel的SSD就是采用了SATA的接口，访问与普通SATA磁盘一样，还有一些企业级的闪存卡，比如FusionIO，则封装为PCIe接口。

SLC和MLC

SLC是单极单元，MLC是多级单元，两者的差异在于每单元存储的数据量（密度），SLC每单元只存储一位，只包含0和1两个电压符，MLC每单元可以存储两位，包含四个电压符（00,01,10,11）。显然，MLC的存储容量比SLC大，但是SLC更简单可靠，SLC读取和写入的速度都比MLC更快，而且SLC比MLC更耐用，MLC每单元可擦除1w次，而SLC可擦除10w次，所以，企业级的闪存产品一般都选用SLC，这也是为什么企业级产品比家用产品贵很多的原因。

wear leveling（损耗均衡算法）
因为SSD存在“写磨损”的问题，当某个单元长时间被反复擦写时（比如Oracle redo），不仅会造成写入的性能问题，而且会大大缩短SSD的使用寿命，所以必须设计一个均衡负载的算法来保证SSD的每个单元能够被均衡的使用，这就是wear leveling，称为损耗均衡算法。

Wear leveling也是SSD内部的FTL实现的，它通过数据迁移来达到均衡损耗的目的。Wear leveling依赖于SSD中的一部分保留空间，基本原理是在SSD中设置了两个block pool，一个是free block pool（空闲池），一个是数据池（data block pool），当需要改写某个page时（如果写入原有位置，必须先擦除整个block，然后才能写入数据），并不写入原有位置（不需要擦除的动作），而是从空闲池中取出新的block，将现有的数据（不需要修改）和需要改写的数据合并为新的block，一起写入新的空白block，原有的block被标识为invalid状态（等待被擦除回收），新的block则进入数据池。后台任务会定时从data block中取出无效数据的block（已标注为invalid），擦除后回收到空闲池中。这样做的好处在于，一是不会反复擦写同一个block，二是写入的速度会比较快(省略了擦除的动作)。

 Wear leveling分为两种：动态损耗均衡和静态损耗均衡，两者的原理一致，区别在于动态算法只会处理动态数据，比如数据改写时才会触发数据迁移的动作，对静态数据不起作用，而静态算法可以均衡静态数据，当后台任务发现损耗很低的静态数据块时，将其迁移到其他数据库块上，将这些块放入空闲池中使用。从均衡的效果来看，静态算法要好于动态算法，因为几乎所有的block都可以被均衡的使用，SSD的寿命会大大延长，但是静态算法的缺点是当数据迁移时，可能会导致写性能下降。

写入放大

因为SSD的erase-before-write的特性，所以就出现了一个写入放大的概念，比如你想改写4K的数据，必须首先将整个擦除块（512KB）中的数据读出到缓存中，再对其中的4K改写后，将整个块一起写入，这时你实际写入了512KB的数据，写入放大系数是128。写入放大最好的情况是1，就是不存在放大的情况。

Wear leveling算法可以有效缓解写入放大的问题，但是不合理的算法依然会导致写入放大，比如用户需要写入4k数据时，发现free block pool中没有空白的block，这时就必须在data block pool中选择一个包含无效数据的block，先读入缓存中，改写后，将整个块一起写入，采用wear leveling算法依然会存在写入放大的问题。

通过为SSD预留更多空间，可以显著缓解写入放大导致的性能问题。根据我们的测试结果，MLC SSD在长时间的随机写入后，性能下降很明显（随机写IOPS甚至降低到300）。如果为wear leveling预留更多空间，就可以显著改善MLC SSD在长时间写操作之后的性能下降问题，而且保留的空间越多，性能提升就越明显。相比较而言，SLC SSD的性能要稳定很多（IOPS在长时间随机写后，随机写可以稳定在3000 IOPS），我想应该是SLC SSD的容量通常比较小（32G和64G），而用于wear leveling的空间又比较大的原因。

数据库IO特点分析

IO有四种类型：连续读，随机读，随机写和连续写，连续读写的IO size通常比较大（128KB-1MB），主要衡量吞吐量，而随机读写的IO size比较小(小于8KB)，主要衡量IOPS和响应时间。数据库中的全表扫描是连续读IO，索引访问则是典型的随机读IO，日志文件是连续写IO，而数据文件则是随机写IO。

数据库系统基于传统磁盘访问特性来设计，最大特点是日志文件采用sequential logging，数据库中的日志文件，要求必须在事务提交时写入到磁盘，对响应时间的要求很高，所以设计为顺序写入的方式，可以有效降低磁盘寻道花费的时间，减少延迟时间。日志文件的顺序写入，虽然是物理位置是连续的，但是并不同于传统的连续写类型，日志文件的IO size很小（通常小于4K）,每个IO之间是独立的（磁头必须抬起来重新寻道，并等待磁盘转动到相应的位置），而且间隔很短，数据库通过log buffer（缓存）和group commit的方式（批量提交）来达到提高IO size的大小，并减少IO的次数，从而得到更小的响应延迟，所以日志文件的顺序写入可以被认为是“连续位置的随机写入”，瓶颈还是在IOPS，而不是吞吐量。

数据文件采用in place update的方式，意思是数据文件的修改都是写入到原来的位置，数据文件不同于日志文件，并不会在事务commit时写入数据文件，只有当数据库发现dirty buffer过多或者需要做checkpoint动作时，才会刷新这些dirty buffer到相应的位置，这是一个异步的过程，通常情况下，数据文件的随机写入对IO的要求并不是特别高，只要满足checkpoint和dirty buffer的要求就可以了。

SSD的IO特点分析

1.随机读能力非常好，连续读性能一般，但比普通SAS磁盘好。

2.不存在磁盘寻道的延迟时间，随机写和连续写的响应延迟差异不大。

3.erase-before-write特性，造成写入放大，影响写入的性能。

4.写磨损特性，采用wear leveling算法延长寿命，但同时会影响读的性能。

5.读和写的IO响应延迟不对等（读要大大好于写），而普通磁盘读和写的IO响应延迟差异很小。

6.连续写比随机写性能好，比如1M顺序写比128个8K的随即写要好很多，因为随即写会带来大量的擦除。

基于SSD的上述特性，如果将数据库全部放在SSD上，可能会有以下的问题：

1.日志文件sequential logging会反复擦写同一位置，虽然有损耗均衡算法，但是长时间写入依然会导致性能下降。

2.数据文件in place update会产生大量的随机写入，erase-before-write会产生写入放大。

3.数据库读写混合型应用，存在大量的随机写入，同时会影响读的性能，产生大量的IO延迟。

基于SSD的数据库优化法则：

基于SSD的优化就是解决erase-before-write产生的写入放大的问题，不同类型的IO分离，减少写操作带来的性能影响。

1.将sequential logging修改为In-page logging，避免对相同位置的反复擦写。

2.通过缓存写入的方式将大量的in-place update随机写入合并为少量顺序写入。

3.利用SSD随机读写能力高的特点，减少写增加读，从而达到整体性能的提升。

In-page logging

In-page logging是基于SSD对数据库sequential logging的一种优化方法，数据库中的sequential logging对传统磁盘是非常有利的，可以大大提高响应时间，但是对于SSD就是噩梦，因为需要对同一位置反复擦写，而wear leveling算法虽然可以平衡负载，但是依然会影响性能，并产生大量的IO延迟。所以In-page logging将日志和数据合并，将日志顺序写入改为随机写入，基于SSD对随机写和连续写IO响应延迟差异不大的特性，避免对同一位置反复擦写，提高整体性能。

In-page logging基本原理：在data buffer中，有一个in-memory log sector的结构，类似于log buffer，每个log sector是与data block对应的。在data buffer中，data和log并不合并，只是在data block和log sector之间建立了对应关系，可以将某个data block的log分离出来。但是，在SSD底层的flash memory中，数据和日志是存放在同一个block（擦除单元），每个block都包含data page和log page。

当日志信息需要写入的时候（log buffer空间不足或者事务提交），日志信息会写入到flash memory对应的block中，也就是说日志信息是分布在很多不同的block中的，而每个block内的日志信息是append write，所以不需要擦除的动作。当某个block中的log sector写满的时候，这时会发生一个动作，将整个block中的信息读出，然后应用block中的log sector，就可以得到最新的数据，然后整个block写入，这时，block中的log sector是空白的。

在in-page logging方法中，data buffer中的dirty block是不需要写入到flash memory中的，就算dirty buffer需要被交换出去，也不需要将它们写入flash memory中。当需要读取最新的数据，只要将block中的数据和日志信息合并，就可以得到最新的数据。

In-page logging方法，将日志和数据放在同一个擦除单元内，减少了对flash相同位置的反复擦写，而且不需要将dirty block写入到flash中，大量减少了in-place update的随机写入和擦除的动作。虽然在读取时，需要做一个merge的操作，但是因为数据和日志存放在一起，而且SSD的随机读取能力很高，in-page logging可以提高整体的性能。

SSD作为写cache—append write

SSD可以作为磁盘的写cache，因为SSD连续写比随机写性能好，比如：1M顺序写比128个8K的随机写要好很多，我们可以将大量随机写合并成为少量顺序写，增加IO的大小，减少IO(擦除)的次数，提高写入性能。这个方法与很多NoSQL产品的append write类似，即不改写数据，只追加数据，需要时做合并处理。

基本原理：当dirty block需要写入到数据文件时，并不直接更新原来的数据文件，而是首先进行IO合并，将很多个8K的dirty block合并为一个512KB的写入单元，并采用append write的方式写入到一个cache file中（保存在SSD上），避免了擦除的动作，提高了写入性能。cache file中的数据采用循环的方式顺序写入，当cache file空间不足够时，后台进程会将cache file中的数据写入到真正的数据文件中（保存在磁盘上），这时进行第二次IO合并，将cache file内的数据进行合并，整合成为少量的顺序写入，对于磁盘来说，最终的IO是1M的顺序写入，顺序写入只会影响吞吐量，而磁盘的吞吐量不会成为瓶颈，将IOPS的瓶颈转化为吞吐量的瓶颈，从而提升了整体系统能力。

读取数据时，必须首先读取cache file，而cache file中的数据是无序存放的，为了快速检索cache file中的数据，一般会在内存中为cache file建立一个索引，读取数据时会先查询这个索引，如果命中查询cache file，如果没有命中，再读取data file（普通磁盘），所以，这种方法实际不仅仅是写cache，同时也起到了读cache的作用。

SSD并不适合放数据库的日志文件，虽然日志文件也是append write，但是因为日志文件的IO size比较小，而且必须同步写入，无法做合并处理，对SSD来说，需要大量的擦除动作。我们也曾经尝试把redo log放在SSD上，考虑到SSD的随机写入也可以达到3000 IOPS，而且响应延时比磁盘低很多，但是这依赖于SSD本身的wear leveling算法是否优秀，而且日志文件必须是独立存放的，如果日志文件的写入是瓶颈，也算是一种解决方案吧。通常情况下，我还是建议日志文件放在普通磁盘上，而不是SSD。

SSD作为读cache—flashcache

因为大部分数据库都是读多写少的类型，所以SSD作为数据库flashcache是优化方案中最简单的一种，它可以充分利用SSD读性能的优势，又避免了SSD写入的性能问题。实现的方法有很多种，可以在读取数据时，将数据同时写入SSD，也可以在数据被刷出buffer时，写入到SSD。读取数据时，首先在buffer中查询，然后在flashcache中查询，最后读取datafile。

SSD作为flashcache与memcache作为数据库外部cache的最大区别在于，SSD掉电后数据是不丢失的，这也引起了另外一个思考，当数据库发生故障重启后，flashcache中的数据是有效还是无效？如果是有效的，那么就必须时刻保证flashcache中数据的一致性，如果是无效的，那么flashcache同样面临一个预热的问题（这与memcache掉电后的问题一样）。目前，据我所知，基本上都认为是无效的，因为要保持flashcache中数据的一致性，非常困难。

flashcache作为内存和磁盘之间的二级cache，除了性能的提升以外，从成本的角度看，SSD的价格介于memory和disk之间，作为两者之间的一层cache，可以在性能和价格之间找到平衡。  

