
WIFI 模块

WifiSettingsWirelessSettings

android_net_wifi_wifi

wifi

wpa_supplicant

Socket

WifiManager

WifiEnabler

WifiService

AIDL

WifiMonitor

WifiNatvie

WifiStateTracker

AccessPointDialog

JNI

WifiLayer

WIFI_STATE_CHANGED_ACTION NETWORK_STATE_CHANGED_ACTION
SCAN_RESULTS_AVAILABLE_ACTION

SUPPLICANT_CONNECTION_CHANGE_
ACTION

JAVA VM

初始化

在 SystemServer 启动的时候，会生成一个 ConnectivityService 的实例，
 try {
 Log.i(TAG, "Starting Connectivity Service.");
 ServiceManager.addService(Context.CONNECTIVITY_SERVICE, new
ConnectivityService(context));
 } catch (Throwable e) {
 Log.e(TAG, "Failure starting Connectivity Service", e);
 }
ConnectivityService 的构造函数会创建 WifiService，

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

 if (DBG) Log.v(TAG, "Starting Wifi Service.");
 mWifiStateTracker = new WifiStateTracker(context, handler);
 WifiService wifiService = new WifiService(context, mWifiStateTracker);
 ServiceManager.addService(Context.WIFI_SERVICE, wifiService);
WifiStateTracker 会创建 WifiMonitor 接收来自底层的事件，WifiService 和 WifiMonitor 是整

个模块的核心。WifiService 负责启动关闭 wpa_supplicant、启动关闭 WifiMonitor 监视线程

和把命令下发给 wpa_supplicant，而 WifiMonitor 则负责从 wpa_supplicant 接收事件通知。

连接 AP

1. 使能 WIFI
WirelessSettings 在初始化的时候配置了由 WifiEnabler 来处理 Wifi 按钮，
 private void initToggles() {
 mWifiEnabler = new WifiEnabler(
 this,
 (WifiManager) getSystemService(WIFI_SERVICE),
 (CheckBoxPreference) findPreference(KEY_TOGGLE_WIFI));
当用户按下Wifi按钮后，Android会调用WifiEnabler的 onPreferenceChange，再由WifiEnabler
调用 WifiManager 的 setWifiEnabled 接口函数，通过 AIDL，实际调用的是 WifiService 的

setWifiEnabled 函数，WifiService 接着向自身发送一条 MESSAGE_ENABLE_WIFI 消息，在

处理该消息的代码中做真正的使能工作：首先装载 WIFI 内核模块（该模块的位置硬编码为

"/system/lib/modules/wlan.ko" ）， 然 后 启 动 wpa_supplicant （ 配 置 文 件 硬 编 码 为

"/data/misc/wifi/wpa_supplicant.conf"），再通过 WifiStateTracker 来启动 WifiMonitor 中的监视

线程。
 private boolean setWifiEnabledBlocking(boolean enable) {
 final int eventualWifiState = enable ? WIFI_STATE_ENABLED :
WIFI_STATE_DISABLED;

 updateWifiState(enable ? WIFI_STATE_ENABLING : WIFI_STATE_DISABLING);

 if (enable) {
 if (!WifiNative.loadDriver()) {
 Log.e(TAG, "Failed to load Wi-Fi driver.");
 updateWifiState(WIFI_STATE_UNKNOWN);
 return false;
 }
 if (!WifiNative.startSupplicant()) {
 WifiNative.unloadDriver();
 Log.e(TAG, "Failed to start supplicant daemon.");
 updateWifiState(WIFI_STATE_UNKNOWN);
 return false;
 }
 mWifiStateTracker.startEventLoop();
 }

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

 // Success!

 persistWifiEnabled(enable);
 updateWifiState(eventualWifiState);

 return true;
 }
当使能成功后，会广播发送 WIFI_STATE_CHANGED_ACTION 这个 Intent 通知外界 WIFI
已 经 成 功 使 能 了 。 WifiEnabler 创 建 的 时 候 就 会 向 Android 注 册 接 收

WIFI_STATE_CHANGED_ACTION，因此它会收到该 Intent，从而开始扫描。
 private void handleWifiStateChanged(int wifiState) {

 if (wifiState == WIFI_STATE_ENABLED) {
 loadConfiguredAccessPoints();
 attemptScan();

 }
2. 查找 AP
扫描的入口函数是 WifiService 的 startScan，它其实也就是往 wpa_supplicant 发送 SCAN 命

令。
static jboolean android_net_wifi_scanCommand(JNIEnv* env, jobject clazz)
{
 jboolean result;
 // Ignore any error from setting the scan mode.
 // The scan will still work.
 (void)doBooleanCommand("DRIVER SCAN-ACTIVE", "OK");
 result = doBooleanCommand("SCAN", "OK");
 (void)doBooleanCommand("DRIVER SCAN-PASSIVE", "OK");
 return result;
}
当 wpa_supplicant 处理完 SCAN 命令后，它会向控制通道发送事件通知扫描完成，从而

wifi_wait_for_event 函数会接收到该事件，由此 WifiMonitor 中的 MonitorThread 会被执行来

出来这个事件，
 void handleEvent(int event, String remainder) {
 case SCAN_RESULTS:
 mWifiStateTracker.notifyScanResultsAvailable();
 break;
WifiStateTracker 则接着广播发送 SCAN_RESULTS_AVAILABLE_ACTION 这个 Intent
 case EVENT_SCAN_RESULTS_AVAILABLE:
 mContext.sendBroadcast(new
Intent(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));
WifiLayer 注册了接收 SCAN_RESULTS_AVAILABLE_ACTION 这个 Intent，所以它的相关

处理函数 handleScanResultsAvailable 会被调用，在该函数中，先会去拿到 SCAN 的结果（最

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

终是往 wpa_supplicant 发送 SCAN_RESULT 命令并读取返回值来实现的），
 List<ScanResult> list = mWifiManager.getScanResults();
对每一个扫描返回的 AP，WifiLayer 会调用 WifiSettings 的 onAccessPointSetChanged 函数，

从而最终把该 AP 加到 GUI 显示列表中。
 public void onAccessPointSetChanged(AccessPointState ap, boolean added) {

 AccessPointPreference pref = mAps.get(ap);

 if (added) {

 if (pref == null) {
 pref = new AccessPointPreference(this, ap);
 mAps.put(ap, pref);
 } else {
 pref.setEnabled(true);
 }

 mApCategory.addPreference(pref);

 }
 }
3. 配置 AP 参数
当用户在 WifiSettings 界面上选择了一个 AP 后，会显示配置 AP 参数的一个对话框，
 public boolean onPreferenceTreeClick(PreferenceScreen preferenceScreen, Preference
preference) {
 if (preference instanceof AccessPointPreference) {
 AccessPointState state = ((AccessPointPreference)
preference).getAccessPointState();
 showAccessPointDialog(state, AccessPointDialog.MODE_INFO);
 }
 }
4. 连接
当用户在 AcessPointDialog 中选择好加密方式和输入密钥之后，再点击连接按钮，Android
就会去连接这个 AP。
 private void handleConnect() {
 String password = getEnteredPassword();
 if (!TextUtils.isEmpty(password)) {
 mState.setPassword(password);
 }

 mWifiLayer.connectToNetwork(mState);
 }
WifiLayer 会先检测这个 AP 是不是之前被配置过，这个是通过向 wpa_supplicant 发送

LIST_NETWORK 命令并且比较返回值来实现的，

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

 // Need WifiConfiguration for the AP
 WifiConfiguration config = findConfiguredNetwork(state);
如果 wpa_supplicant 没有这个 AP 的配置信息，则会向 wpa_supplicant 发送 ADD_NETWORK
命令来添加该 AP，
 if (config == null) {
 // Connecting for the first time, need to create it
 config = addConfiguration(state,
ADD_CONFIGURATION_ENABLE|ADD_CONFIGURATION_SAVE);
 }
ADD_NETWORK 命令会返回一个 ID，WifiLayer 再用这个返回的 ID 作为参数向

wpa_supplicant 发送 ENABLE_NETWORK 命令，从而让 wpa_supplicant 去连接该 AP。
 // Make sure that network is enabled, and disable others
 mReenableApsOnNetworkStateChange = true;
 if (!mWifiManager.enableNetwork(state.networkId, true)) {
 Log.e(TAG, "Could not enable network ID " + state.networkId);
 error(R.string.error_connecting);
 return false;
 }
5. 配置 IP 地址
当 wpa_supplicant 成功连接上 AP 之后，它会向控制通道发送事件通知连接上 AP 了，从而

wifi_wait_for_event 函数会接收到该事件，由此 WifiMonitor 中的 MonitorThread 会被执行来

出来这个事件，
 void handleEvent(int event, String remainder) {
 case CONNECTED:
 handleNetworkStateChange(NetworkInfo.DetailedState.CONNECTED,
remainder);
 break;
WifiMonitor 再调用 WifiStateTracker 的 notifyStateChange，WifiStateTracker 则接着会往自身

发送 EVENT_DHCP_START 消息来启动 DHCP 去获取 IP 地址，
 private void handleConnectedState() {
 setPollTimer();
 mLastSignalLevel = -1;
 if (!mHaveIPAddress && !mObtainingIPAddress) {
 mObtainingIPAddress = true;
 mDhcpTarget.obtainMessage(EVENT_DHCP_START).sendToTarget();
 }
 }
然后再广播发送 NETWORK_STATE_CHANGED_ACTION 这个 Intent
 case EVENT_NETWORK_STATE_CHANGED:
 if (result.state != DetailedState.DISCONNECTED || !mDisconnectPending) {
 intent = new
Intent(WifiManager.NETWORK_STATE_CHANGED_ACTION);
 intent.putExtra(WifiManager.EXTRA_NETWORK_INFO,
mNetworkInfo);

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

 if (result.BSSID != null)
 intent.putExtra(WifiManager.EXTRA_BSSID, result.BSSID);
 mContext.sendStickyBroadcast(intent);
 }
 break;
WifiLayer 注册了接收 NETWORK_STATE_CHANGED_ACTION 这个 Intent，所以它的相关

处理函数 handleNetworkStateChanged 会被调用，
当 DHCP 拿到 IP 地址之后，会再发送 EVENT_DHCP_SUCCEEDED 消息，
 private class DhcpHandler extends Handler {
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case EVENT_DHCP_START:
 if (NetworkUtils.runDhcp(mInterfaceName, mDhcpInfo)) {
 event = EVENT_DHCP_SUCCEEDED;
 }
WifiLayer 处 理 EVENT_DHCP_SUCCEEDED 消 息 ， 会 再 次 广 播 发 送

NETWORK_STATE_CHANGED_ACTION 这个 Intent，这次带上完整的 IP 地址信息。
 case EVENT_DHCP_SUCCEEDED:
 mWifiInfo.setIpAddress(mDhcpInfo.ipAddress);
 setDetailedState(DetailedState.CONNECTED);
 intent = new
Intent(WifiManager.NETWORK_STATE_CHANGED_ACTION);
 intent.putExtra(WifiManager.EXTRA_NETWORK_INFO, mNetworkInfo);
 mContext.sendStickyBroadcast(intent);
 break;
至此为止，整个连接过程完成。
问题：

目前的实现不支持 Ad-hoc 方式。

www.linuxidc.com

Linux公社(LinuxIDC.com) 是包括Ubuntu,Fedora,SUSE技术，最新IT资讯等Linux专业类网站。

http://www.linuxidc.com
http://www.linuxidc.com

