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Abstract

Face recognition technology is based on biometric identification methods such as
fingerprint recognition and identification of the traditional methods, with real-time, accurate
and non-intrusive, such as features, making it easier for people to accept, the face recognition
technology in many fields and have extensive applications. Face Recognition Technology
Face feature extraction and pattern recognition in recent years based on the biological
characteristics of one of the hot spots.

In this paper, to build a dynamic face recognition system to proceed to discuss the entire
process of building a work of the various sectors of the technology required, the algorithm
was introduced and studied. Including through multi-media equipment to obtain video stream.
Detection in face images, face images of people after pretreatment facial features in advance,
the final classification model. Made the whol e process work as follows:

() first proposed a face detection and the importance of pretreatment on the
concentration of image pre-processing methods, including scale normalized, normalized
gray-scale, histogram equalization, and the use of wavelet analysis to filter out people face of
the low-frequency part of the picture.

(2) described in detail based on statistical characteristics of the three feature extraction
methods, namely, PCA (principal component analysis) LDA (Fisher face method)
KPCA (Kernel Principa Component Analysis).

(3) Introduced a support vector machine method, discussed how to obtain a better kernel
function, and introduced the support vector machine how to use SVM multiclass
classification problem to solve.

(4) In this paper, the system processes, methods and specific algorithms to build a
camera recorded images of the dynamic face recognition system. Test a number of point of
view, a variety of obstacles, a variety of expression conditions such as interference with the
outside world under a variety of algorithms to identify the accuracy and efficiency, and

experimental results are summarized and concluded.

Keywor ds. Face Detection; Face Recognition; PCA; KPCA; Support Vector Machine
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(1]

[12,13]
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D(x.y) k fi(x)
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D(x,y) = {1 if|fk+l(x'y)_fk(xly)|>T (2-1)
0 others
T 0 1
D(x, ) :{(])- lf|fk (x, ) _fk—l(x’y)| >Tand|f, . (x,) = fi (x’y)| >T (2-2)
others
2.2
2.2.1
RGB
[14,15] PCA
RGB 2-3
Gray = (W, R+W,G+W,B)|(W , + W, +W,)
Gray =0.30x R+0.59x G +0.11x B (2-3)
1
[F(x, )] 5o Width  Height P Q
(GO, )i W=92 H=112(ORL )
G(x,y) = F(x/r,,y/r,) (2-4)

x oy o r=O/H 1 =PW



F(X/rx,y/l"y)

x/rx y/ry
(x,»)
x/r, =xy+A,
O0<A LA <1 (2-5)
y/ry:y0+Ay
Xo =[x/r. 1A, = x/r, — x,
Xo Y : :
0 vo=[y/r,1.A, =y/r, =y,

G(x,y)=F(x, +A,, ¥, +Ay) = F(xO’yO)AxAy + F(xo +1,y,)1- Ax)Ay (2-6)
+F(x0, 50 +DA (1-A )+ F(x, +1y, +DA-A,)1-A))
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2.2
N, k
H(k) € E[0]] = i% = i p(i),k=12,GL-1 (2-5)
N, k N
k Nk k )
H(k) =2 —+=2p() (2-6)
H(k) € E[0,1] H(k) [0,1]
MO VO
No()  N((.j) v oM
[No (i,)-Mq] _[NG,j) -MF 2.7

A v

No(D)=M o+l (NG )~ M)P Iy NG)ZM  (2-8)

No(i)=Mo-vo (NG, j)-M)* /v NG<M  (2-9)
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PCA
LDA PCA
KPCA PCA
PCA
[20]
3.1 PCA
X, X X,
: (principal

component analysis)
3.1.1

X X ... X S S ... S,

Q) Ci=ayx,Fapx,+ ... +a,x, Var(C)) o
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(2 ComapXxiFazx,+...+ayx, (an ap ... ay) (an ayp ... ay)

Var(C,) G,
3 . p

3.1.2

c ¢, ... C
(@H)] i j G
Corr(C;, C)=0i #j
2 (aq ap ... aip)
©)
Var(Cl1)=Var(C2)>...>Var(Cp)
4
Var(C1)+Var(C2)+ ... +Var(Cp) = Var(xl)+Var(x2)+ ... +Var(xp) =p

(5 Corr(C;, x)=a;=a,;

® X X .. X R (ay a, ... a,) R i
(eigenvector) A i
Var(C)= 1,
4, R i (eigenvalue)

3.1.3
p p ¢,
C, C,
() )
(
)
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PCA K-L K-L [e2 25

X n n X
X=Yag, (31)
a ¢
X = (8.4 b ), 05,0 ,)" = Dx (3-2)
D= (4,0p008,) a=(ap.a,) (3-3)
T _ 1 j=i :
O, D, = {O I (3-4)
)
ORNOE (3-5)
(3-2) ol
a=® "X (3-6)
a=0"X (3-7)
(04 (24
{D;}
R=E[X"X| (3-8)
32 (39

R=E[X"X|=E|®aa’®”] =@ E[Xx'X]®T (39

(24

A j=i
Ela,akJ={ 0 i (3-10)
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D= A (3-11)
0o - 4,
R=OAD' (3-12)
®
RO=0DOAD'D (3-13)
®
Rb=D A (3-14)
R®=A;®, (=12..,n) (3-15)
A, X R D, R
n n*n
R(0) R(1) R(2)
R(N) R(mM)=[x(n)*x(n+m)]/n m=0,1,2,....,n

R1=zeros(m,m);

r=zeros(m,1);

for mm=1:m
for n1=(mm+1):m

r(mm)=r(mm)+Z(nl)* conj(Z(n1-mm))/m;

end

end

for 11=1:m
for 12=I1:m

R1(11,12)=r(12-11+1);

end

end
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for 13=2:m
for 14=1:13-1
R1(13,14)=conj(r(13-14+1));

end
end
3.2 LDA
3.2.1 LDA
LDA Fisher
PCA PCA
N F F X n
L0, Wy, O, n, S, (
S, S,
Sb:ZP(a)i)(mi _mO)(mi _mo)T (3'16)
S,=3 P(e)E{ (X -m)(X-m) o, } (3-17)

S,=5,+ S, =E{(X mo)(X -mg)T} = S (X “mo)(X-m)T  (3-18)
P(w,)=n,/N i m, =E{X/ v, }

mOZE{X}ZZm: Plw,)m,

1
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Fisher (19) Fisher (20)

T
_P' S,
J = 3-19
i(9) oS, (3-19)
0SS,
Jp)="—=> 3-20
(o) oS0 (3-20)
Q n
W()pt
Fisher
wrs,w
W, =arg max WTS:,W = [w,w, e, | (3-21)
Wopt
S W, =4S W, (i=2, ,m) (3-22)
S'S, A,
3.2.2 PCA+LDA
PCA [ j p(j=12..8;i=12,..,C)
S C
iz Hy
Vxe X, X, e X, x=x—-y, (3-23)
/:li =H, —H (3'24)
PCA U
U

M =U T:[li (3-25)
17



LDA

(1) SB SW
i
S, = > %" (3-26)
C
SW = z Si
i=1
C
Sy =Y Pui' (3-27)
i=1
2) S, S, A
1%
S,V =SV (3-28)
3)
C-1
PCA LDA
(4)
U Fisher
W
3.3 PCA
3.3.1 PCA
PCA KPCA PCA

PCA
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X =(x,,%,,...x,)
K, =(k(x,,x;)); i,j=L2.n
1 1& 1 &
Kij = KU _N;:‘Llimej _ﬁ;Kinlnj +F’;llimen1nj
3 K; z Vi
1
ak =—V,, '::LZ,...I’I
7
ul k
(kPC), (x) = (V" ¢ ®(x)) = D" &, k(x; » x)
i=1

clear al;
close dl;
t=0;
Variances=0.040;
k=0:;
h=0;
Vsum=0;
fori=1:1:100

t=t+0.01;

x(i,1)=t;

X(i,2)=t"2-3*t;

X(i,3)=-t"3+3*t"2;
end
randn('seed'’,0);
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e=[0.1*randn(100,1),0.1* randn(100,1),0.1* randn(100,1)];

XE=X+€;

model Xe_normalization=zscore(xe);
Vmean=mean(xe(1:100,)));
Vstd=std(xe(1:100,:));

for m=1:1:100
for n=m:1:100
mediaVector=model Xe_normalization(m,:)-model Xe_normalization(n,:);
Kernel Matrix(m,n)=exp(-norm(mediaVector)"2/(2* Variances*2));
KernelMatrix(n,m)=KernelMatrix(m,n);
end

end

ell=size(KernelMatrix,1);

In=ones(ell,ell)./ell;

centralKernelM atrix=Kernel M atrix-KernelMatrix* In-
In* KernelMatrix+In* KernelMatrix* In;

[U,S] = svd(centraKernelM atrix);
while(h<=€ll)& & (V sum<99)
h=h+1;
Vsum=Vsum+S(h,h)/sum(diag(S)) * 100;

end

k=23;

V=U(,1k);

L=S(1:k,1:k);
inverseL=diag(1./diag(L));

20



sortL=diag(sart(diag(L)));
invesgrtL=diag(1./diag(sqrtL));
KernelMatrixFeature=invesgrtL*V™* centralKernel Matrix;
allKernelMatrixFeature=diag(1./(sgrt(diag(S))))* U* centra KernelMatrix;
for i=1:1:100
time(i)=i;
model T2(i)=K ernel M atrixFeature(:,i)* inverseL * Kernel M atrixFeature(:,i)* 10;

end
3.3.2 PCA
KPCA
PCA KPCA KPCA
3.4
PCA(
) LDA Fisher KPCA( )
PCA
LDA PCA PCA
KPCA PCA

PCA
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22

[21]

VC

VC

((VCH



SVM
H 2 K
H Ve
H Ve
VC [29]
Ve Ve
e
Ve N vC  ntl
4.1.2
[27]
4.1 i H,

H;,H;

4.1

(X1, 01)s0(x,, 0, ) X e "y, €{-11} X,
(w- x)+b=0
(w- x,)+b20if y =1

(w- x)+b <0 if y =1 (4-1)
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gx)=(w- x)+b

2(x)] > 1(
)
lg(0)|=1
2
o [
v.[(w- x)+b]-120, i=1,2,...,n (4-2)
SVM
SVM 4.2
S A v
& '
Y X <
R %
e o [ >
PP e e
* 90
eoe 7
L N
he » %1
@
4.2
1 2
[wi [wi
(4-3) (4-1)
D(w) =|w]| 2 (4-3)

(4-4) Langrange

L(w,b,a)=% w 2- i a,y,(wx+Db)+ i a, (4-4)
i-1 i-1
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(4-5)  (4-6) (4-4) (4-9)
(4-11):

a,=(a),aj,..., al) w
" =2W(ao) X alalyy, (xx,)

SupportVector

(4-11) W(a)

Vapnik

y, [(wex,)+b]>1-&,& >0=12,...,n

S

O(w.) =03 &)+ *

Q

(4-15) Langrange
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(4-5)

(4-6)

(4-7)

(4-8)

(4-10)

(4-9)

(4-10)

(4-11)

(4-12)

(4-2)

(4-13)

(4-2)

(4-14)

(4-14) (4-13)
(4-15) :



L(W,b,a):%||w||2-2{ a,y,(wx+b)-1+& |- Y wé  (4-15)

i-1 i-1

s_; =Qa,-u,=0 (4-16)
a, (y, (wx +b) -1+ £ )=0, Vi (4-17)
o, p & >0,Vi (4-18)
1 ,E=0,Yi (4-19)
(4-20) (4-12)
0<a, <Qi=1,2,...n (4-20)
2,<Q, & b i 0<a <Q
VC h
h<min([R?A%,n])+1 (4-21)
4.1.3
H X ® RY>H
K
KXy, )=®(x;)e D(y,) (4-22)

W(a) :Zn:a-% > aa Kk, {CD(xi)oq)(xj)}

:Za-% D aa Kk KX LY (4-23)
i-1 ij
f)= D ay@Xx)ed(x)+b= > ayK(x,x;)+b (4-24)
SupportVector SupportVector
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4.1.4

(28]

(1)
k(x,y)=(xe y +1)“ (4-27)
2
k(x,y)=exp[- M} (4-28)
2a
3)
k(x,y)==tanh((x e y )+b) (4-29)
4.2
SVM 1-V
A 1-V-1 (29
4.2.1
SVM
k SVM SVM i SVM
0 1 0 1
k m (Xllyl) (Xm’yk)’ X, €R” i=1 M

Y€ {Lk}
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min l(w[)Twi +0Y &

2 =t
(W) O(x,)+b' 21-&/ if y,=i
(W) ®(x,)+b' <1-&/ if y, #i

£ 20,j=1 ...m

1 2 i :
LT T 0 5}’
) ]
(W)  d(x) +b*
(W) D(x) + b’
Classof x = agg%(wi)T®(x)+bi
4.2.2
k(k-1)/2 [0l i j

min l(wi)Twij +0) &Y
2 e

(W) D(x;) +b? 21- &7 if y,=i
(W) d(x;)+b" <1-&7 if y, #I
£ 20
4.3
4.3.1
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KPCA

SVM (3
43
B T 1 N
B mEwW | | & Poa —
B [ 8 [ REE ) ) Uiz
GF o L BV |
e
| 2¥Ine | |
4.3
43
KPCA
SVMn n SVM
4.3.2
4.4
(' B B % SV A5
B B N o HN oPpoa BN aE N S8
e Y e Y =) — 2, —
FFAE -
4.4
SVM
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5.1.1

5.1

10

40

ORL

PCA

5.1 ORL
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5.1

5 4 3 2 1
180 87.9% 88.2% 85.8% 87.5% 86.2%
150 86.8% 87.5% 86.9% 87.2% 85.2%
120 88.4% 86.8% 87.1% 86.1% 81.7%
80 87.3% 87.6% 88.3% 84.3% 80.6%
20 84.5% 82.6% 81.9% 81.4% 77.2%
5 65.4% 62.8% 61.2% 57.4% 54.9%
120 80 5 3
PCA
[33]
5.1.2
ORL 40 5
5
5.2 (=)
5.2

PCA( ) 85.1% 89.4%

Fisher 87.9% 92.4%

KPCA 94.5% 93.8%

PCA( ) 91% 92.1%

SVM Fisher 91.6% 93.2%

KPCA 95.8% 95.3%
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PCA LDA KPCA KPCA KPCA
PCA
5.1.3 PCA
KPCA
KPCA
5.3 KPCA
k(x,y)=(x-y+1* d=1 Daub(2)
5.3 PCA
ORL (%) ©)
KPCA 199 93.8% 0.11
2
199 95.9% 0.18
+KPCA
5.1.4
Daubechies Daub(2) Daub(4)

(bior N) Sym
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ORL ORL 20 2
5 PCA
54
5.4
Daub(2) Daub(4) Daub(6) Bior(2.4)  Bior(4.4) Sym(2)
2 89.6 86.9 85.7 92.8 89.7 89.6
3 91.8 89.7 90.6 95.3 94.6 92.3
4 92.8 935 90.2 93.6 92.9 92.0
5 94.7 94.5 92.6 954 93.2 93.1
Bior 24
5.2
[34]
20
KPCA
55
5.5
<20
98.8% 92.5% 86.6% 66.9%
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