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Abstract: Face detection is born, as an independent subject, of face recognition and develops with
the requirement of the automatic face recognition system. Over the past ten years face detection
has been thoroughly studied in computer vision research for its interesting applications, such as a
face recognition system, a surveillance system and a machine interface. Whether face detection
can come into use depends on the two key problems: the detection rate and the velocity together.
Although the detection rate has been improving during the last ten years, the speed is still a
problem to cumber face detection system from being widely used. The hard work of researchers,
especially the release of the AdaBoost based classifier presented by Viola, has made the detection
velocity improve rapidly. Since, the researches began to lay more emphasis on the velocity of the

system and a lot of algorithms, about how to increase the speed of face detection, have been



presented. Based on these rapid developments of its velocity, this paper demonstrates it from the
view of velocity. The whole stage of face detection is divided into four parts according to the
extent of the face-detection velocity: the initial phase, the developing phase, the turning point and
the synthesis phase. After the systematical analyses of the papers in different phases, several
promising directions for future researches are also proposed in this paper.
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Fig. 1. Face and nonface clusters used by Sung and Poggio [12]. Bottom row are the final models which consist of

six Gaussian “face” clusters and six “nonface” clusters [12]( Courtesy of Tomao Poggio).
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Fig. 2. Skin detection: (a) a yellow-based face image; (b) skin regions of (a) shown in white; (c) a lighting

compensated image of (a); (d). Skin regions of (c) [27]( Courtesy of R. L. Hsu)
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Fig. 3. Example of an edge orientation vector field [36]( Courtesy of Bernhard Froba).
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Fig. 5. Discriminating feature analysis of the mean face and the mean nonface. (a) The mean face and the
two bar graphs are its amplitude projections; (b) 1D Harr wavelet representation of the mean face; (¢c) The mean
nonface and its amplitude projections; (d) 1D Harr wavelet representation of the mean nonface [65]. (Courtesy of
R. Lienhart )
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Fig. 6: Overview of the algorithm [51]. (Courtesy of H. Rowley )
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Fig. 7. Calculation of the integral image value: The value of the integral image at location 1 is to calculate the sum
of the pixels in rectangle A. The value at location 2 is A+B, at location 3 is A+C, and at location 4 is A+B+C+D.

The sum within D can be computed as 4+1-(2+3) [11]. (Courtesy of P. Viola)
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Fig. 8. Example rectangle features demonstrated in the enclosing detection window. The pixels sum within the

white rectangles is subtracted from the pixels sum in the grey rectangles. Two-rectangle features are shown in (A)

and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle feature [11]. (Courtesy of P. Viola )
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Table 1. The Adaboost algorithm of classifier learning

1 FIH Adaboost57% 2% S [ RERAE [11]

®  Given example set S and their initial weights g, ;

° Do for =1,.......T:

1. Normalize the weights @,

For each feature, j, train a classifier 4; with respect to the weighted samples;

Calculate error, choose the classifier 4, with the lowest error;

E NS IS
J s

+ Update weights @

1+1°2

®  Get the final strong classifier /(x).
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Fig. 9. The overview of the detection cascade. Each sub-window is scanned by a series of classifiers. A
large number of negative examples are eliminated by the first classifier with very little processing. Subsequent
layers eliminate additional negatives. The number of sub-windows has been reduced radically after several stages

of processing. [ 11]. (Courtesy of P. Viola )
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Fig. 10. Feature prototypes of simple haar-like and center-surround features. Black areas have negative and white

areas positive weights [43]( Courtesy of Rainer Lienhart).
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Fig. 11. Face features found by Kullback-Leibler Analyses (KLA). The first row lists some features
sequentially found in KLBoosting. The second, third and last rows are “global semantic”, “global but not

semantic” and “local” features, respectively [69]. (Courtesy of C. Liu )
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Table 2. Some parameters of different methods (appear according to the time of being printed)

R 2 SPIREN SRS R (U RN TR HE51)D

) Reference
Velocity | 5" Fase Th
© e year
Methods Y rate Image size |Configuration y
(frame/second) alarms . of being
(%) (by pixels) | of computer .
printed

H. Rowley [17] 1 86.0 31 320%240 — 1998

H. Schneiderman [9] 0.2 94.4 65 320%240 — 2000

Y. Zhu[75]]  ~1" _ Noperformance 320x240 PC300MHz | 2000

improvement over [75]

® 108x108— DEC Alpha

R. Feraud [61] 1 74.7 46 1024%1024 333MHz 2001

P. Viola [11] 15 92.1 50 384x288 PIII700MHz | 2001

R. Lienhart [43] 5 82.3 24 320%240 P4 2GHz 2002

Stan Z. Li [67] 5 90.2 31 320x240 PIIl 700MHz | 2002
900MHz Sun

C.J. Liu [49] 1 97.4 1 320x240 Blade 1000 2003
workstation

C. Liu [69] 2.5 95.0 10°¢ 320%240 P4,1.8GHz | 2003

B. Froba [10] 25 89.7" 227 320x240  |Athlon1000MHzZ| 2003

“Denote that the detector can run at 1frame per second on the images of 320x240, approximately;
®1t is the average velocity while the detector runs on the images ranging from 108x108 to 1024x1024;
®Only the false rate is given instead of the false alarms;

It is acquired by the ROC curves in this paper.

VRN I U 320%240 KNI IR, B KL 1 i/ R

PIEAE 13,182 K /NEX [HI[108x 108-1024x 102414 & A [ G 22 1IN (K91 34 A0 FRL I i) o
G A TR R, B AR I A A B

R Z SO 4 R ROC #2R 45 211

6 SHERE

NN 2 o B T 6D i w e B NV U L6 L7 R~ S W N 52 a1
o) RV IR o A RAST I I ) R 2 )2, e AR R ) AR 22, SEBA FH () T7 k0e
FEAE—SEPRHE o BRI 7000 8 A2 BT R 8 A T R A N 1 5 MR AR Y77 th
TR LT BT N AR 20 R ), Rk A Bk e | R R R EEA

Sk UE, 55T Boosting Al Cascade 5% 1) R Ge A B2 J7 1 HAT IR R L BE o e 27
P ) — & %)) Haar-like FFAE R LA [, 18IS Boosting Hyka 3] —2L555 2888, AL S K —
AR e AH— AR AR IEA L LA 58 AT 55, IEEEG I — RN AL [R5 5 I8 4%
WK 4 s AR EEE— DR RS R, gk 75 400 B0 22 () 5k 70 28408, (HUR IR )2 FRAIG
R o FRATTIA A — 7 1H0 o] DUR ] SEAF 1 V15 0 8 ] e ) U R R T7 7% o — Tl
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W] KRR R I IER B (— M 98.5%) & U39, AR A I AR N K 25 AH Y.
KD, XA GBI — 255 50 KA 5 5 TE I 58 5 SR AAE R 20 R FA i I )L, s
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