

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Speaker Name Bold Arial
All Else Regular Arial

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Workshop goals or outcome.

- Debug and test PDN's (power distribution networks) with more precision, accuracy and confidence.
- More easily isolate root cause.
- Avoid false negative (or positive) test results.
- Know what specialized tools will make your job easier.

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Agenda

- Introduction: The need for PI measurements. (15 min)
- Hands-on labs:
 - Get to know the S-Series and new UI (15 min)
 - Noise—minimize unwanted scope noise (20 min)
 - Break, Questions or Buffer (20 min)
 - Measuring common power rails (15 min)
 - Reducing scope and probe loading (10 min)
 - Maximizing BW when needed (10 min)
 - Frequency domain for noise source analysis and triggering for noise components (15 min)

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Agenda

- Hands-on lab: Noise—minimize unwanted scope noise.
 - Lowest noise oscilloscope path.
 - BW limit to reduce measurement system noise.
 - The affects of attenuation ratio.
 -

Power Integrity Workshop

Agenda

– Hands-on lab: Lowest noise oscilloscope path.

- Hardware: S-Series
- Set-up file : “50ohm 1meg compare.set” (BW 500MHz, 5us/, 1mV/)
- Composite file: “50ohm 1meg noise compare.osc”
- Default set-up, recall set-up
- Add Vpp and Vrms meas to Ch1
- Open Ch1 dialogue and move to upper right.
- Select between 50 ohm and 1M ohm and compare meas. (this is a null meas. Good idea to do with whole set-up, scope/probe to be sure they are up to the task).

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Agenda

- Hands-on lab: BW limit to reduce measurement system noise
 - Hardware: S-Series
 - Set-up file : “50ohm 1meg compare.set” (BW 500MHz, 5us/, 1mV/)
 - Composite file: none
 - Continue from previous example (low noise path)
 - Add FFT to CH1
 - Open CH1 dialogue box (if not already) and change BW 500MHz at a time up to max and back down to 500MHz.
 - Select Analog BW limit 200Mhz and 20Mhz

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Agenda

- Hands-on lab: The affects of attenuation ratio

- Hardware: S-Series
- Set-up file : “50ohm 1meg compare.set” (BW 500MHz, 5us/, 1mV/)
- Composite file: “50ohm 1meg noise compare.osc”
- Continue from previous example (BW limit to reduce noise)
- Set analog BW limit to “Off”, Set input impedance to 1M
- Turn-off FFT (Function 1)
- Close CH1 dialogue box
- Set CH1 vertical to 1mV/
- Note Vpp and Vrms
- Plug-in 10:1 passive probe and note Vpp and Vrms

Power Integrity Workshop

Agenda

– Hands-on lab: Extra Credit—50ohms into 1M

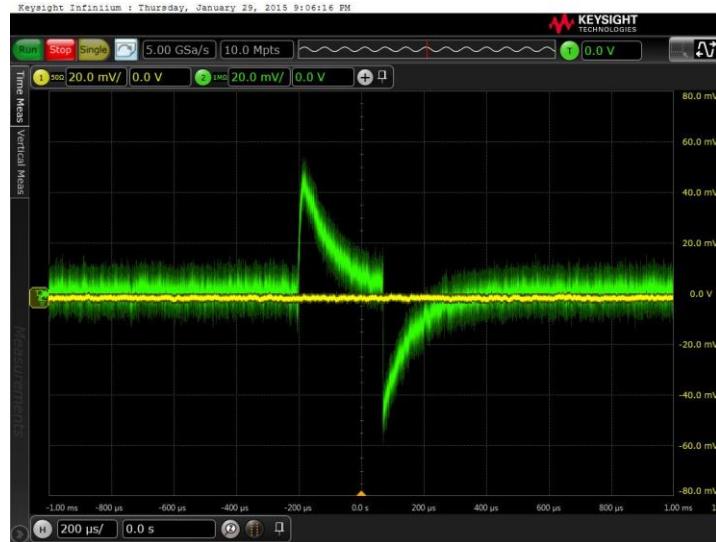
- Hardware: S-Series and demo board
- Set-up file : none
- Composite file: “50ohm into 50 and 1M noise.osc”
- Plug USB cable into demo board, SEL left, S401 pos2 left.
- Set vert to 1V/
- Open Ch1 dialogue and set to 50 ohm
- Connect BNC-SMA to 10MHz clock and Ch1
- Set Ch1 to 1M (impedance mis-match causes reflections and amplitude errors—2 out of 3)
- Optional—connect 10:1 passive to ch2, clip alligator ground to probe, ground on adjacent SMA and probe signal. Now remove alligator and attach short ground spring and probe (better quality)
 - Have a discussion about return currents and ground lead inductance.

Power Integrity Workshop

Agenda

- Hands-on lab: Ground lead length—shorter is better
 - Set-up file: none
 - Composite file: “ground lead length compare.osc”
 - Continuer from previous lab.
 - connect 10:1 passive to ch2, clip alligator ground to probe, ground on adjacent SMA and probe signal.
 - Now remove alligator and attach short ground spring and probe (better quality)
 - Have a discussion about return currents and ground lead inductance.

Power Integrity Workshop


Agenda

– Hands-on lab: High Impedance antennae

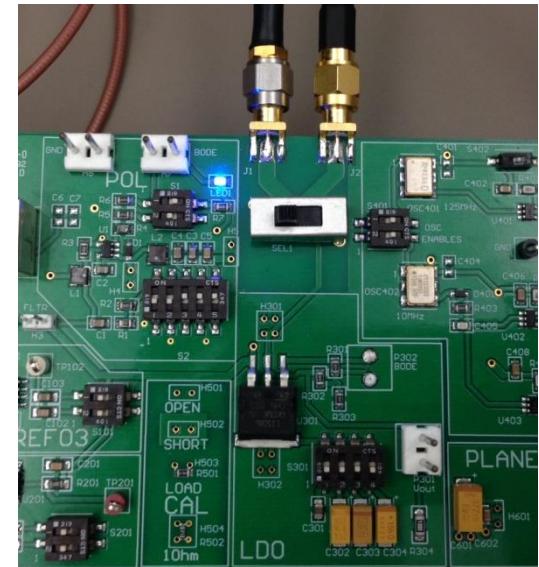
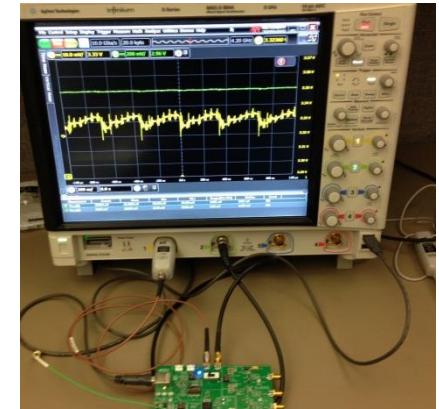
- Set-up file: none
- Composite file: “high imp antennae.osc”
- Default set-up
- Connect Kona browser to SMA-BNC adapter and connect to CH1

– OR

- Connect Kona browse to Kona and Kona to Ch1
- Connect 10:1 passive to Ch2
- Turn-on Touch Screen (if not already)
- Set vertical to 20mV/ and horizontal to 200uS
- Hold both probes close and observe noise coupling into high impedance path
 - Have a discussion switchers and other things coupling into passive probes when making PI measurements..

Power Integrity Workshop

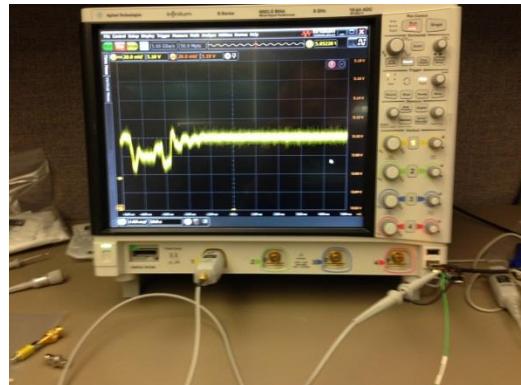
Debug and characterization using an oscilloscope.



Agenda

- Hands-on lab: measuring common power rails.
 - Maximize dynamic range.
 - Know the limits of dc blocks.

Power Integrity Workshop

- Hands-on lab: measuring common power rails.


- **Maximize dynamic range.**
- Hardware: Kona, BNC-to-SMA cable, USB-A-B cable, Kona demo board.
- Set-up file : “offset on 3,3 demo board.set” (5GSa/s, 1ms/, 5.0V offset, 20mV/)
- Composite file : “offset on 3,3 demo board.osc” (ch 1 10mV, 3.33V offset, ch2 200mV, 2.96V offset, trigger ch1 3.324V, 200ns/div)
 - Connect Kona and BNC-SMA cable to demo board sma connectors. Connect usb to demo board and to scope.
 - Default set-up. Recall set-up. Connect Kona. Connect BNC cable.
 - Hit run.
 - Add a Vpp measurement to ch2
 - Turn-on channel 1 (after a while press stop—optional)
 - Add Vpp meas to ch1
 - Notice ch2, overstates the answer by about 25%.

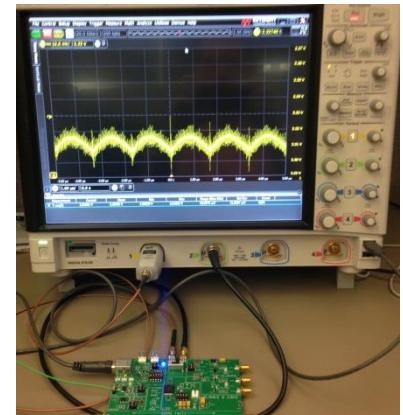
Power Integrity Workshop

– Hands-on lab: measuring common power rails.

- **Know the limits of dc blocks.**
- Hardware: Kona, Kona Browser, USB demo board (ignore green wire in photo), dc block, sma to bnc adapter, passive probe ground lead, passive probe grabber.
- Set-up file : “dc block on usb.set” (5GSa/s, 1ms/, 5.0V offset, 20mV/)
- Composite file: “dc block on usb kona.osc” (traces trying to capture below—Kona mem1, dc block mem2)
 - Grabber and ground lead on browser and attach to Kona. Grabber to header pin +5V (pin by J4 on board) and grabber to ground stud on USB board.
 - Default set-up. Recall set-up, attach Kona, plug-in usb, hit “run”.
 - Kona on, let it run and see drop-outs.
 - “Stop” (or set trigger) to capture a drop-out.
 - Save waveform to waveform memory 1.
 - Remove Kona, remove browser from Kona, attach dc block and BNC adapter to browser.
 - Change ch1 to 50ohms if not already (scope may kick it into 1M when removing Kona).
 - Attach browser/block/adapter and press “run”
 - Set ch1 offset to 0V (type it in or press knob).
 - Observe that no drop-outs are seen.

Power Integrity Workshop

Debug and characterization using an oscilloscope.



Agenda

- Hands-on labs: Reducing scope and probe loading

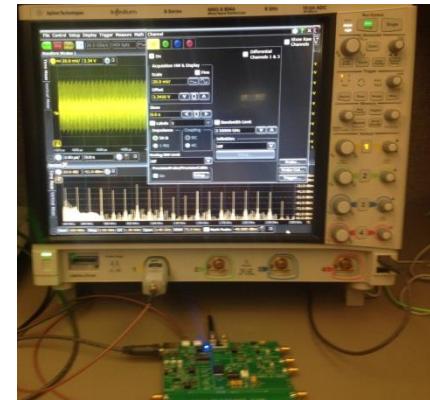
Power Integrity Workshop

– Hands-on lab: Reducing scope and probe loading

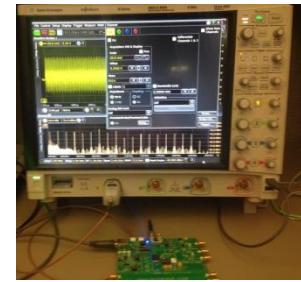
- Hardware: Kona, Kona demo board, BNC-to-SMA cable
- Set-up file : “50ohm loading.set” (BW 500MHz, 1us/, 3.33V offset, 10mV/)
- Composite file: “50ohm loading.osc” (Before connecting 50ohm Mem1, after Mem2)
 - Be sure to set switches as shown on demo board (this is different from default state)—all the way to right and all the way to the left.
 - Connect demo board to USB and plug USB into scope
 - Connect Kona to sma on demo board, connect BNC/SMA cable to demo board but DO NOT connect it to the scope yet.
 - Default set-up, recall set-up
 - Connect Kona to scope
 - “Run”
 - Add Vave meas to Ch1
 - Note the Vave reading.
 - Now connect the BNC/SMA cable to ch2.
 - notice the waveform moved and decrease of Vave (~25mV).

Power Integrity Workshop

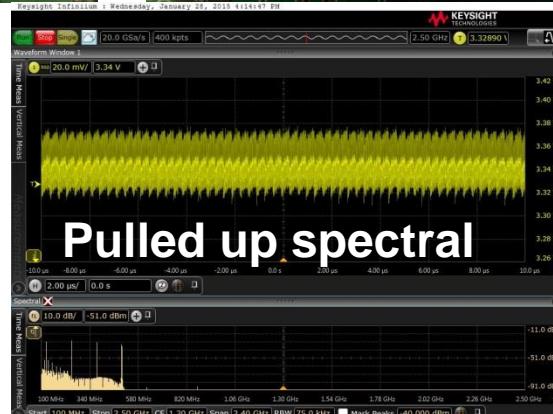
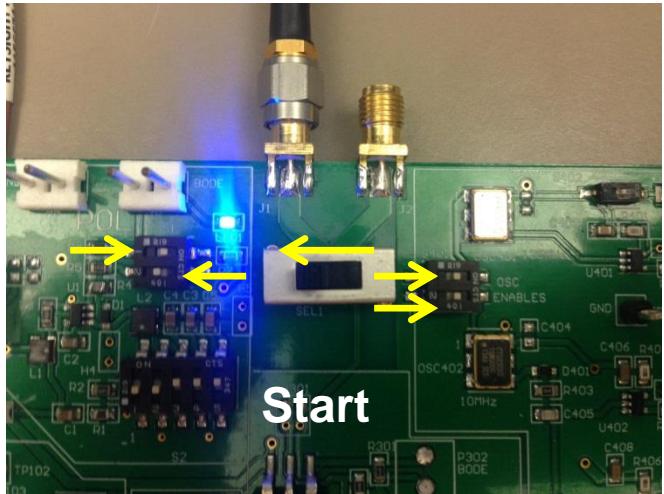
Debug and characterization using an oscilloscope.


Agenda

- Hands-on lab: Maximizing BW when needed.
 -


Power Integrity Workshop

- Hands-on lab: Maximizing BW when needed
- Hardware: Kona, Kona demo board



- Set-up file : “BW example.set” (BW 500MHz, 2us/, 3.33V offset, 20mV/, fft 100Mhz start—2.5GHz stop)
- Composite file: “BW example.osc”
 - Set demo board switches as shown (see following slide)
 - Connect Kona to sma on demo board
 - Factory default set-up, recall set-up.
 - Connect Kona to scope
 - “Run”
 - Move Switch S401, position 1 to left—notice the extra noise on the supply. We turned on a 125MHz clock.
 - Grab top of spectral window and pull it up
 - Open Ch1 dialog and move to upper right
 - Begin increasing Ch1 BW limit 500MHz at a time to 2.5GHz pausing each time—notice how the noise spikes continue in BW.

Power Integrity Workshop

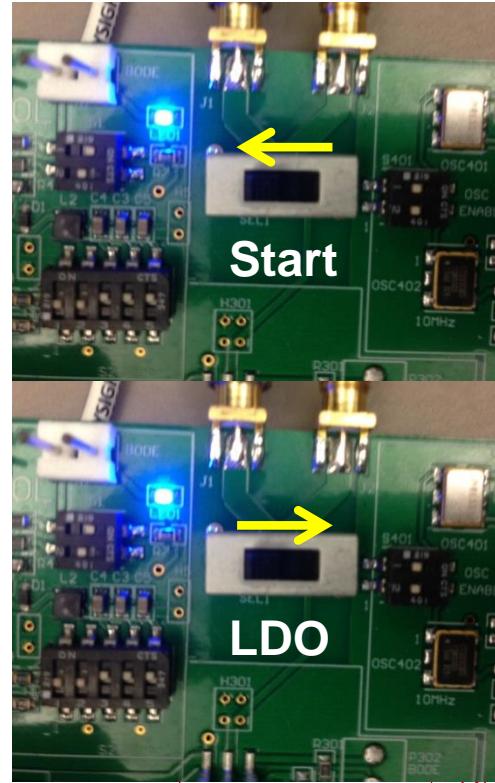
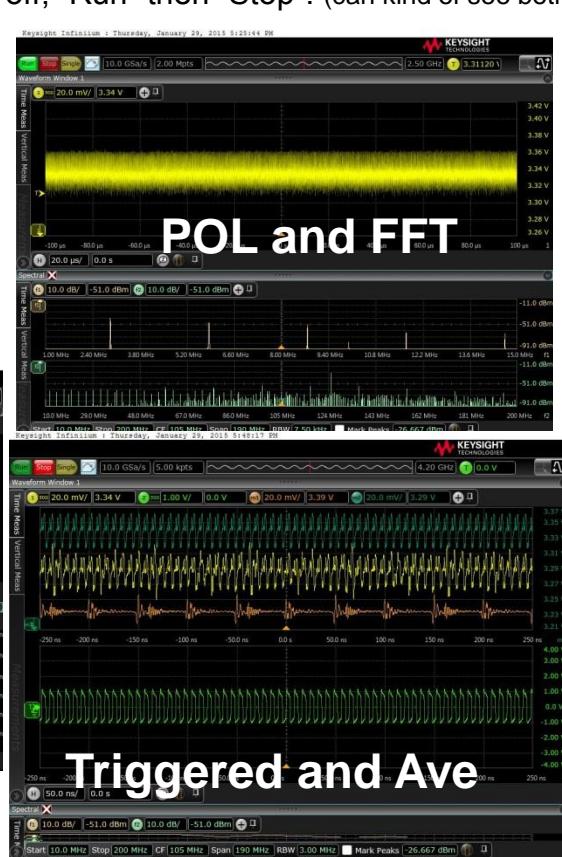
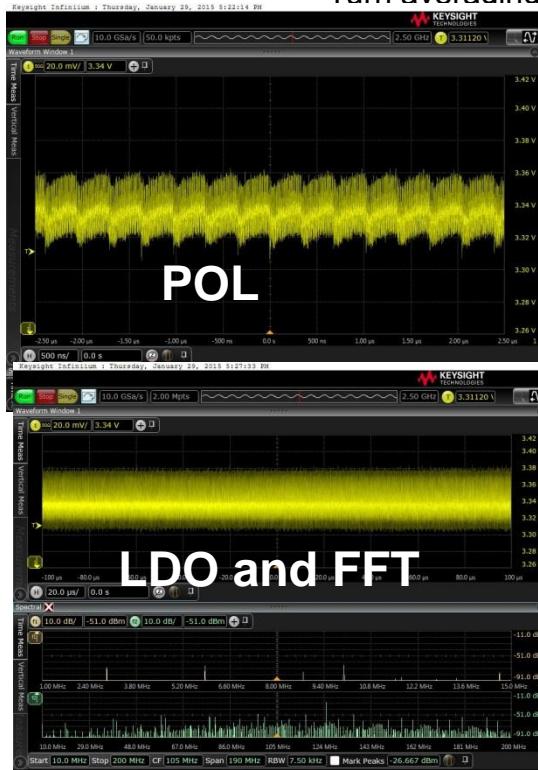
- Hands-on lab: Maximizing BW when needed

Power Integrity Workshop

Debug and characterization using an oscilloscope.

Agenda

- Hands-on lab: Frequency domain for noise source analysis and triggering for noise components




Power Integrity Workshop

- Hands-on lab: Frequency domain for noise source analysis and triggering for noise components
- Hardware: Kona, Kona demo board, BNC-SMA cable
 - Set-up file : “fft.set” (BW 200MHz, 10GSa/s, 500ns/, 3.34V offset, 20mV/, trigger ch1 3.311V fft1 1Mhz start—15MHz stop, fft2 10Mhz—200MHz both on Ch1)
 - Composite file: multiple
 - Set demo board switches as shown (see following slide)
 - Connect Kona to sma on demo board, connect BNC-SMA to 10MHz clock
 - Factory default set-up, recall set-up.
 - Connect Kona and BNC-SMA cable to scope
 - “Run” (looking at output of 2.8MHz switcher—POL)
 - Grab top of spectral window and pull it up (notice some spikes but RBW is wide—need longer aqc)
 - Change time base to 20us/ (notice 2.8 spike, 10MHz spike and 125MHz spike)
 - Move SEL1 switch all the way to the right (now looking a the LDO, notice 10MHz is bigger)
 - Create 2 Grids, turn on channel 2 (be sure it's in grid 2)

Continued Next Page

Power Integrity Workshop

- “Stop” and change time base to 50ns/, move FFT down out of way (see any correlation?)
- Trigger on Ch2 and run.
- Turn-on averaging (this is the noise correlated to the 10MHz clock).
- Save CH1 to Memory1 and move up/down out of the way.
- Turn off averaging and then “Stop” (you can kind of see similarities between correlated and supply)
- Move BNC-SMA cable to 125MHz clk . “Run” and then after a while “Stop” (correlation?)
- “Run” and turn on averaging.
- “Stop”, CH1 to Memory2 and move up/down out of the way.
- Turn averaging off, “Run” then “Stop”. (can kind of see both saved traces in live trace).

12/17/2015

Update this text

Page 21