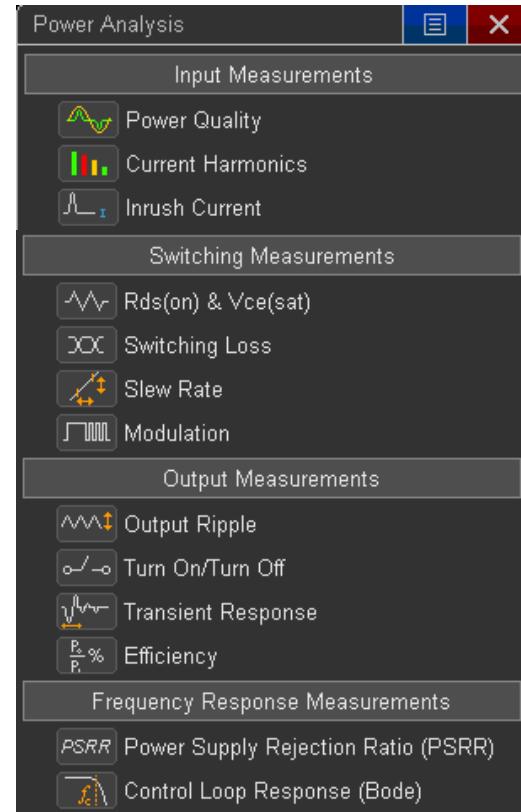


A4WP Magnetic Resonance Wireless Charging Measurements using an Oscilloscope

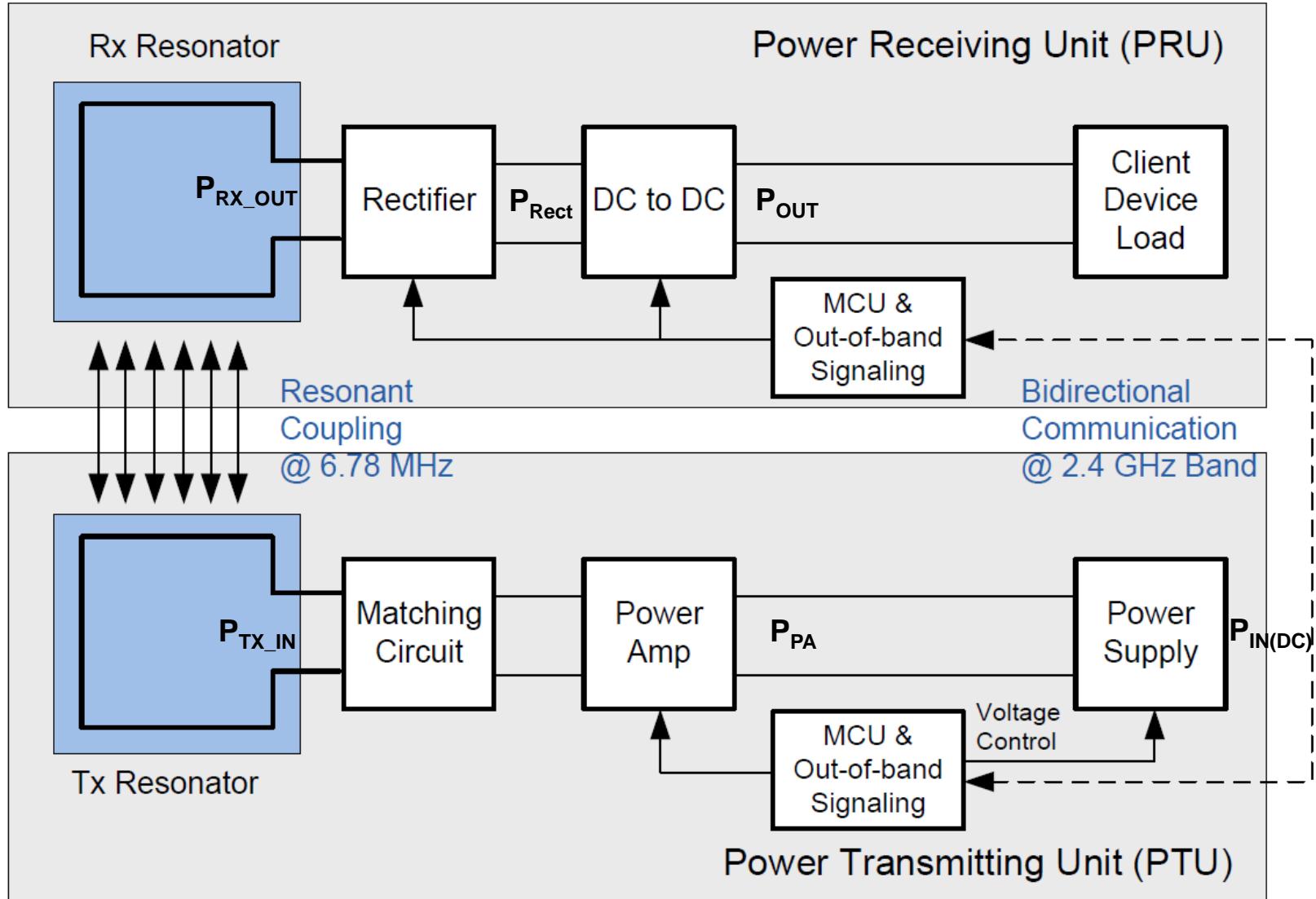

Wireless Charger Testing Total Solution

Keysight Offering	Recommended Models	Qty	RAT Ref.	Remark	
VNA	● VNA Selection:				
VNA For Compliance?	Low-power	High-power			
Yes	<ul style="list-style-type: none"> ● E5072A/(245 or 285)/006 or ● E5071C/240 (require manually calculation) or ● Equivalent E5061B/3L5/005/006 or E5063A/205/006 				
No	<ul style="list-style-type: none"> ● E5072A/(245 or 285)/006 or ● E5061B/3L5/005/006 (LCR/VNA in one) or ● E5063A/205/006 (Economic) or ● E5071C/240 (require manually calculation) or ● E5080A/245 (require manually calculation) <p>If need accurate Z measurement or high Q (>100): We can further sell either E4990A/010 (or 020 to also cover NFC @13.56MHz) or 16047E fixture to use with E5061B For high-volume test, we can add 42941-60002 SMA probe head to raise the throughput</p>	E5072A/(245 or 285)/006	1	4.1.2 4.6.2	<ul style="list-style-type: none"> ● RAT Compliance: E5072A, E5071C (equivalent E5061B/E5063A) ● Opt.006 support: E5072A, E5061B, E5063A ● Require manually calculation: E5071C, E5080A
Attenuator	2x 8493A Coaxial Fixed Attenuator (to protect the VNA inputs from excessive input power) (Optional)	2	4.6.2		
Cal Kit	1x Ecal 85093C (stated in 4.1.2) or cheaper mechanical cal kit 85033E (stated in 4.6.2)	1	4.1.2 4.6.2		
Cables	<ul style="list-style-type: none"> ● 2x 11500F or Z5623A-K20 (RG316 Cables without Chokes, Maximum length: 3 meters, SMA(m)) ● 7x 11500F or Z5623A-K20 (RG36 SMA Coax Cable, slim and flexible cable should be used to wind cable around choke 5 times) 	2 7	4.1.2 4.6.2	Totally 9 SMA(m) cables	
Adaptors	2x 1250-1744, N (m) to SMA (f) adapters	2	4.1.2		
Torque Wrench	1x 8710-1761, SMA torque wrench	1	4.1.2		
Function Gen	1x 33510B (dual channel) Function Generator	1	4.3.2		
Digital Multimeter	1x U1270 Series Handheld DMM (Recommend U1273A OLED, or U1273AX, U1272A)	1	4.3.2 4.6.2		
Oscilloscopes	1x DSOX3014T (at least 100 MHz bandwidth and 2 Giga Samples/Second resolution) for all current measurement Recommended: If also need RCE measurement, then D(M)SOX4024A or D(M)SOS054A for efficiency test and good PI performance and it's better than Tek's MSO4014B and TCP0030 probe	1	4.3.2 4.6.2	4.3.2 need better scope, can upselling D(M)SOX4024A or D(M)SOS054A for efficiency test and good PI performance and it's better than Tek's MSO4014B and TCP0030 probe	
AC Current Probe	2x N2893A 100MHz/15A AC/DC Current Probe (rated at least 5 Amps RMS at 6.78 MHz, bandwidth 50 MHz or more)	2	4.6.2	May need accessories using with different scopes	
HV Diff Probe	2x HV Diff Probe - N2790A, 100 MHz, 50:1/500:1, $\pm 1,400V$, HV Diff Probe	2	4.6.2		
De-skew Fixture	1x U1880A Power measurement de-skew fixture for voltage and current probes (or cheaper custom-made de-skew fixture that consists of just one 10- Ω resistor and a BNC-to-grabber adapter)	1	4.6.2		

Objectives of Today's Presentation

Page 3

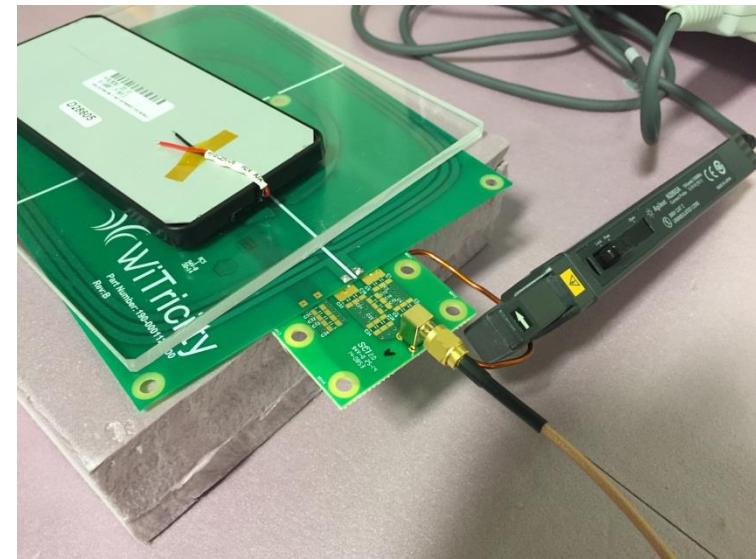
Learn how to use an oscilloscope's advanced triggering, waveform math functions, and parametric measurements to fully characterize resonator current, beacon timing, power, and efficiency in magnetic resonance (A4WP) wireless charging systems.



Agenda

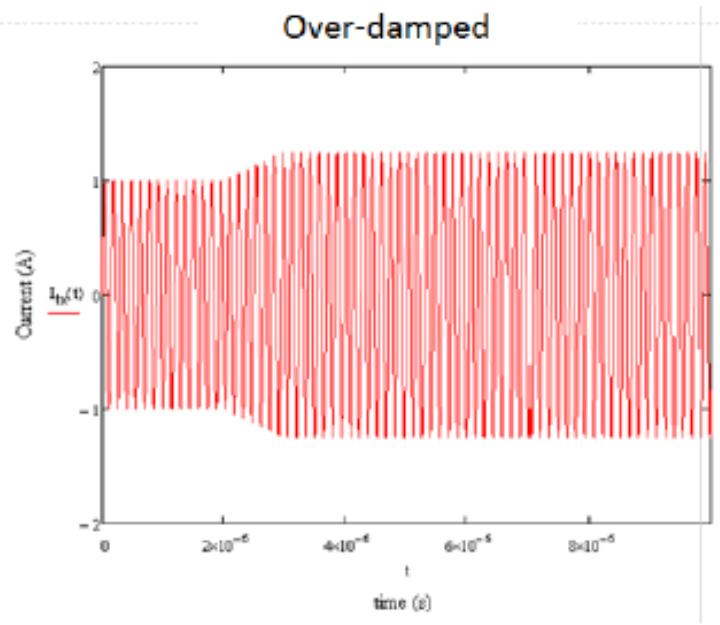
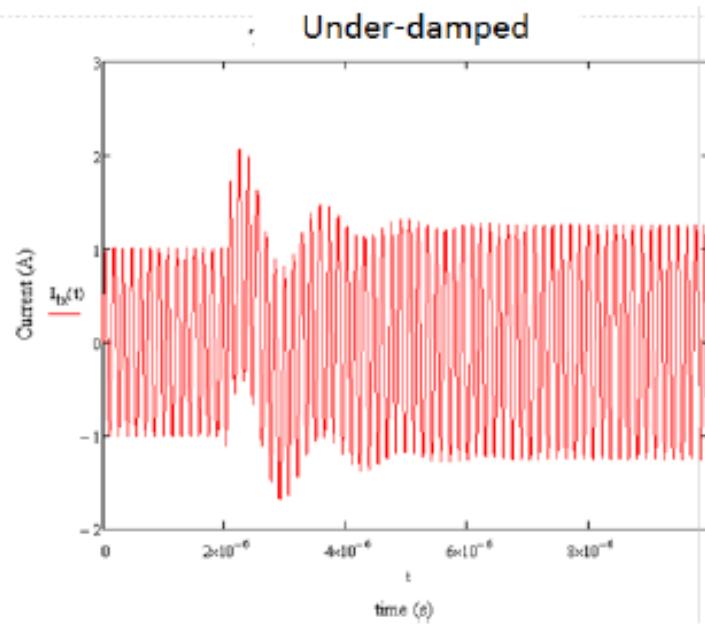
Page 4

- Magnetic Resonant System Overview
- Required Scope Measurements & Specifications
- Triggering on Beacons
- Measurement Technique Overview
- Probe Deskew
- Demonstration
- Wrap-up

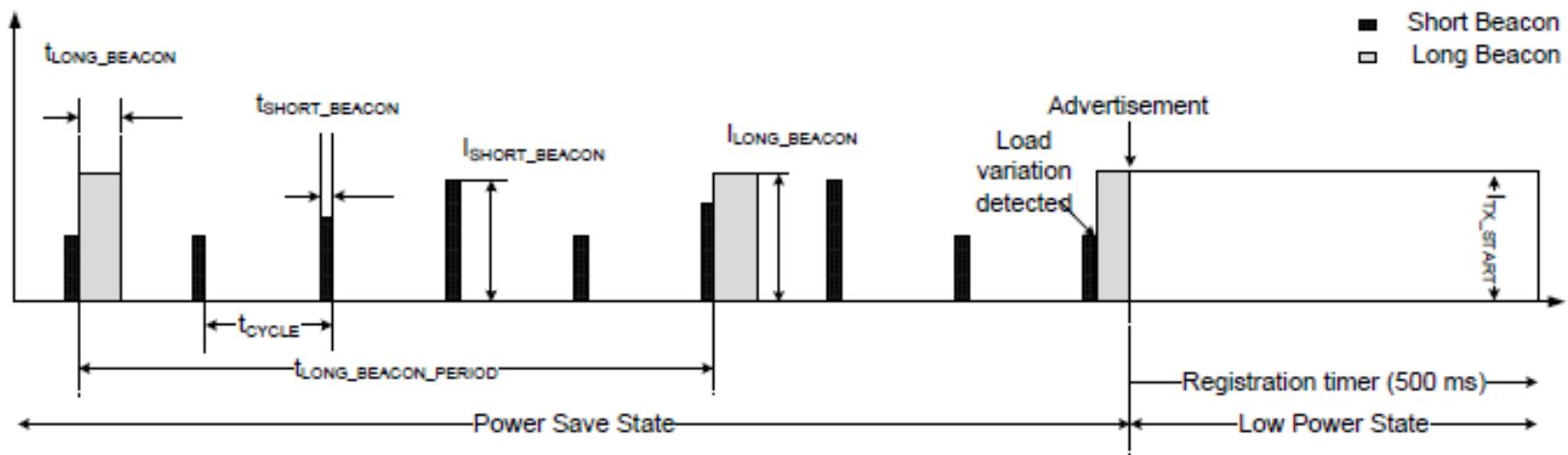

A4WP System Overview

Conformance and Non-conformance Measurements

Using an Oscilloscope



- Resonator Current (I_{TX_COIL})
 - Power Transfer State (Min, Max, Absolute max, Nominal, etc.)
 - Power Save State ($I_{TX_SHORT_BEACON_MIN}$ & $I_{TX_LONG_BEACON_MIN}$)
 - Resonator Frequency (6.78 MHz \pm 15 kHz)
 - Slew Rate (mArms/ms) & Settling Time
- Beacon Timing
 - t_{SHORT_BEACON}
 - t_{LONG_BEACON}
 - t_{CYCLE}
 - $t_{LONG_BEACON_PERIOD}$
- Power & Efficiency (*non-conformance*)
 - PTU Real Power (P_{TX_IN})
 - PRU Real Power (P_{RX_OUT})
 - Resonator Coupling Efficiency (RCE)
 - System Efficiency ($\eta = P_{RX_OUT}/P_{IN(DC)}$)

PTU Resonator Current Specifications


Resonator Current (I_{TX_COIL})	Class 2 Example	Class 3 Example	Class 4 Example
I_{TX_MIN}	410 mArms	850 mArms	965 mArms
$I_{TX_SHORT_BEACON_MIN}$	410 mArms	850 mArms	600 mArms
$I_{TX_LONG_BEACON_MIN}$	450 mArms	850 mArms	800 mArms
I_{TX_START}	450 mArms	850 mArms	1300 mArms
$I_{TX_NOMINAL}$	450 mArms	1200 mArms	1375 mArms
I_{TX_MAX}	650 mArms	1250 mArms	1680 mArms
$I_{TX_ABS_MAX}$	750 mArms	1300 mArms	1862 mArms
$SR\text{-}max(I_{TX})$	100 mArms/ms	100 mArms/ms	150 mArms/ms

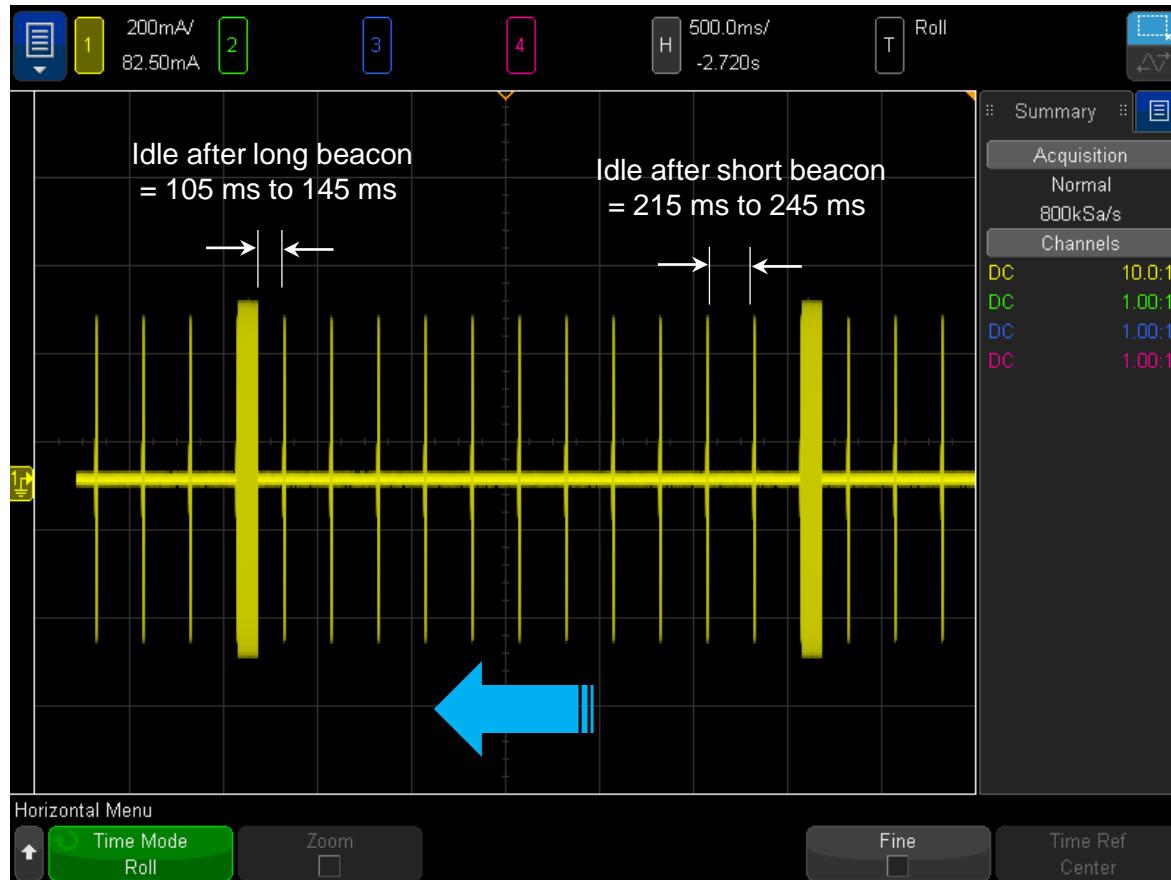
PTU | I_{TX_COIL} Transition Response & Slew Rate

- I_{TX_COIL} shall reach steady-state within 250 ms of any transition (90% of delta between start and end current values).
- Transition shall not be under-damped.
- Slew rate of I_{TX_COIL} (RMS current level change/shift - not instantaneous) shall not exceed SR-max (I_{TX}) unless faster rate is required to reach $I_{TX_SHORT_BEACON_MIN}$ within 10ms.

Beacon Timing and Sequence

Time Constraint	Value (ms)	Description
t_{SHORT_BEACON}	10 to 30	The short beacon-on-period
t_{LONG_BEACON}	105 ± 5	The long beacon-on-period
t_{CYCLE}	250 ± 5	The short beacon period
$t_{LONG_BEACON_PERIOD}$	$> 850 \leq 3000$	The long beacon period

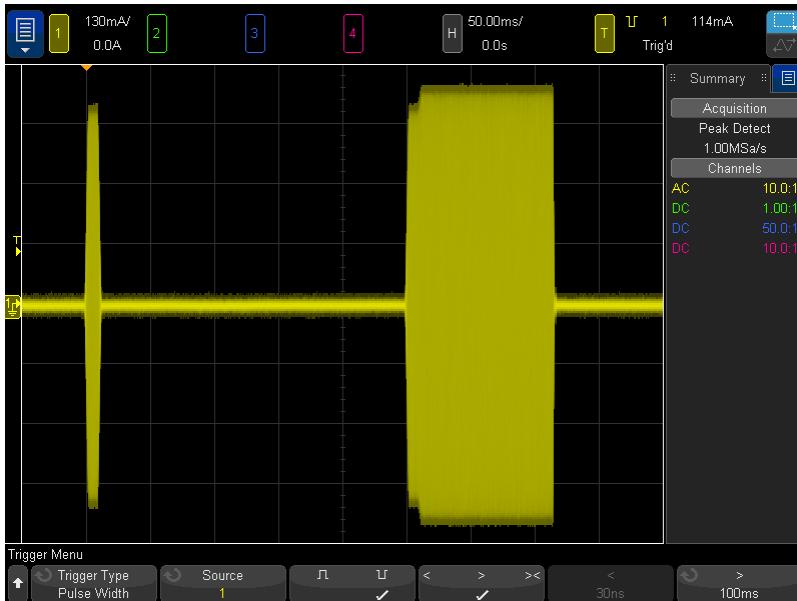
Resonate Coupling Efficiency (RCE)

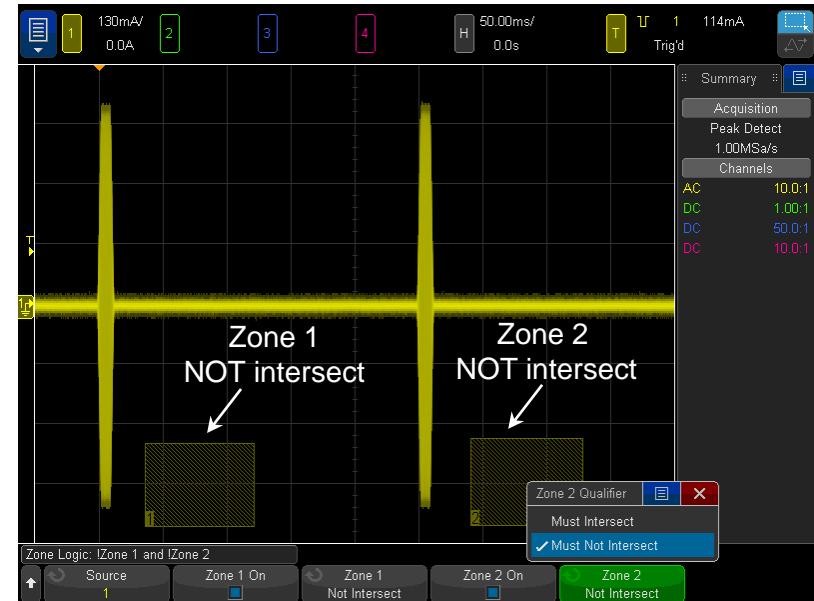

Minimum RCE (percent and dB) between PRU and PTU

RCE stated as % (dB)

	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7
Class 1	N/A						
Class 2	N/A	74 (-1,3)	74 (-1,3)	N/A	N/A	N/A	N/A
Class 3	N/A	74 (-1,3)	74 (-1,3)	76 (-1,2)	N/A	N/A	N/A
Class 4	N/A	50 (-3)	65 (-1,9)	73 (-1,4)	76 (-1,2)	N/A	N/A
Class 5	N/A	40 (-4)	60 (-2,2)	63 (-2)	73 (-1,4)	76 (-1,2)	N/A
Class 6	N/A	30 (-5,2)	50 (-3)	54 (-2,7)	63 (-2)	73 (-1,4)	76 (-1,2)

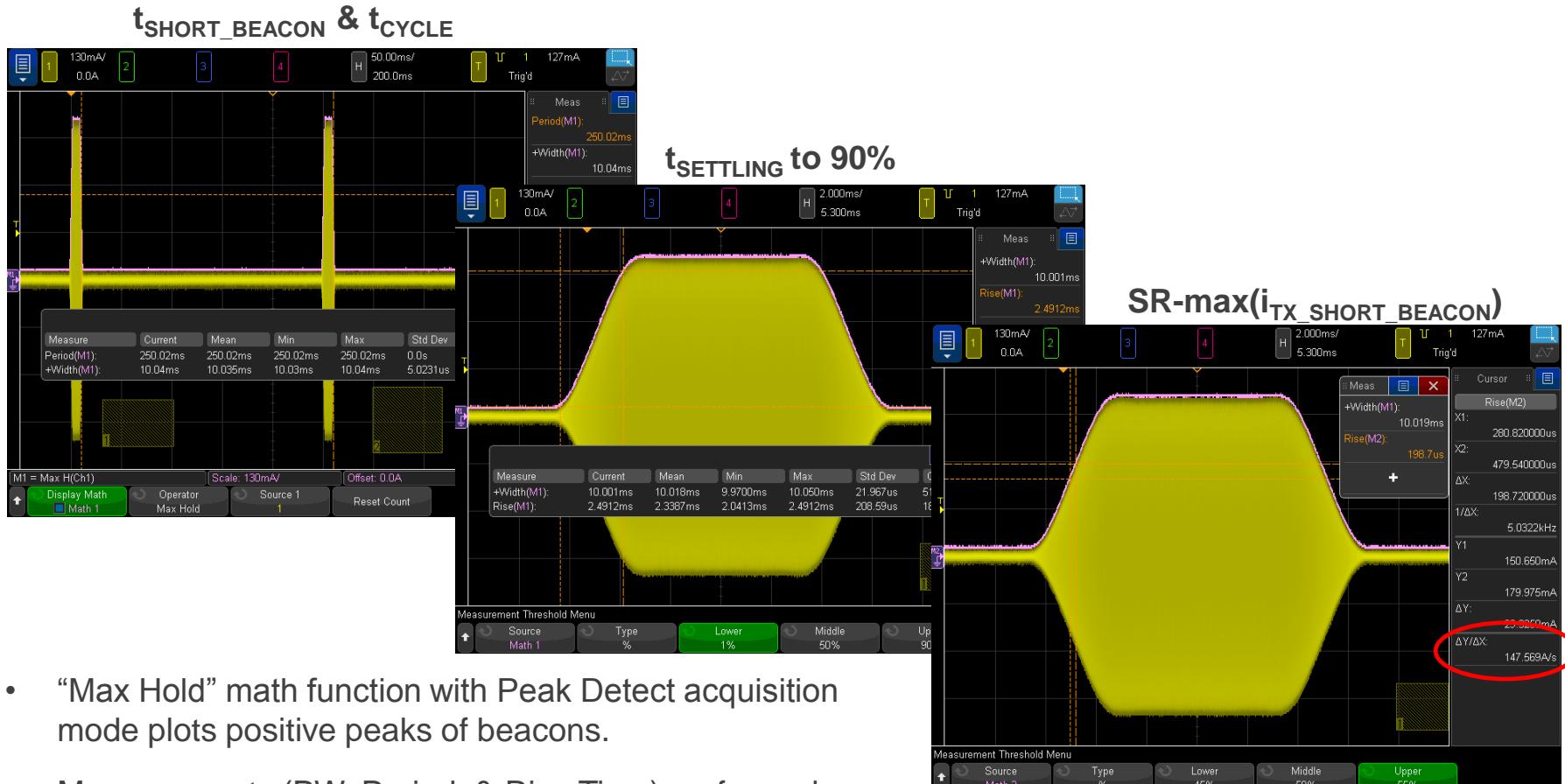
- For conformance testing, RCE is computed using S-parameters or Z-parameters obtained from network analyzer measurements.
- For design verification (non-conformance), RCE can be directly measured using an oscilloscope.
- At 6.78 MHz, probe deskew calibration is critical!
- Power losses and efficiency of various stages of the PTU and PRU can also be directly measured using an oscilloscope during design verification in order to optimize overall system efficiency.


Viewing Beacons in “Roll” mode

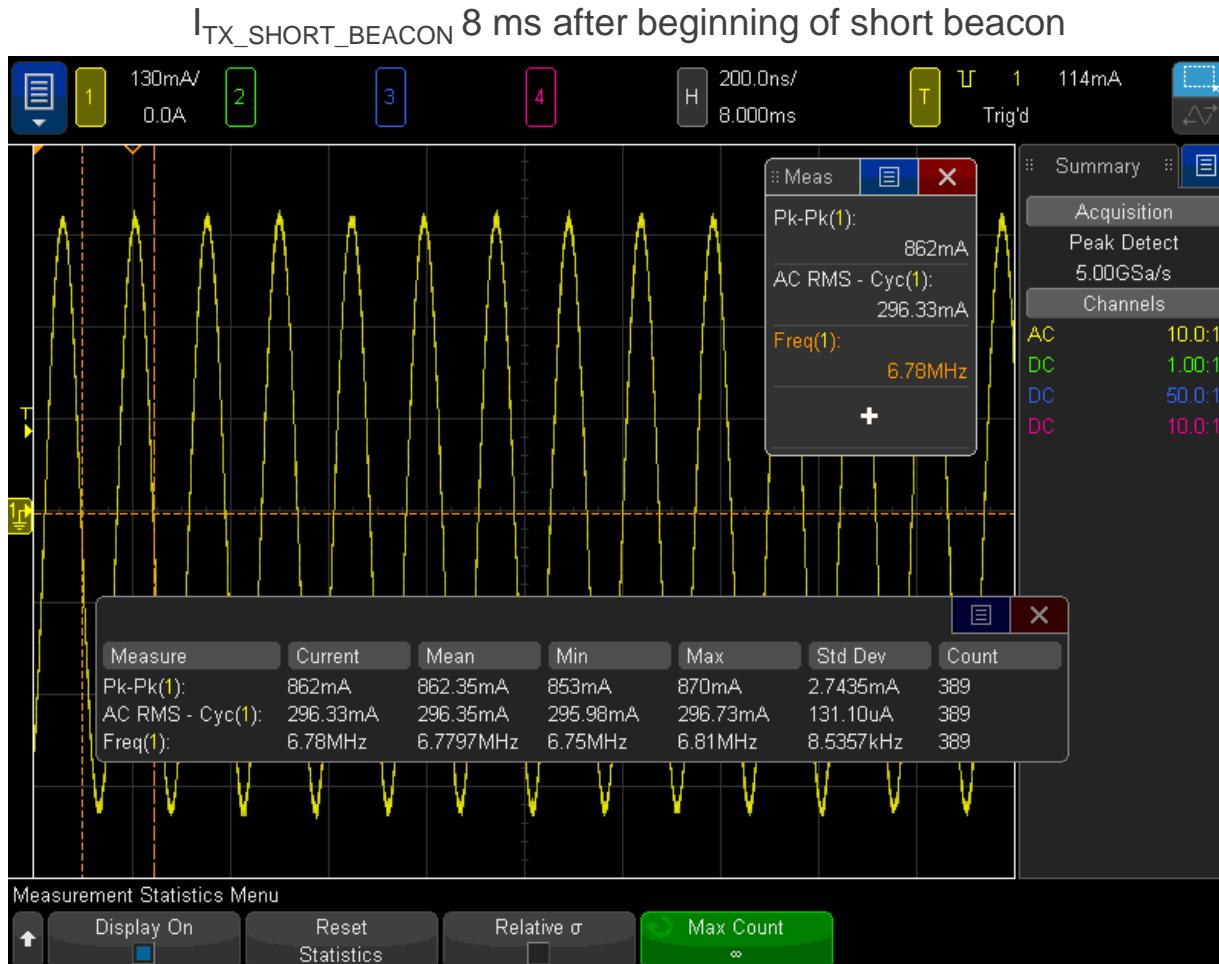

- Optimizing vertical scaling is easiest in “roll” mode.
- Although qualitative timing measurements can be performed using “roll” mode, precision quantitative timing AND current measurements should be performed in a triggered mode.

Triggering on Isolated Short Beacons

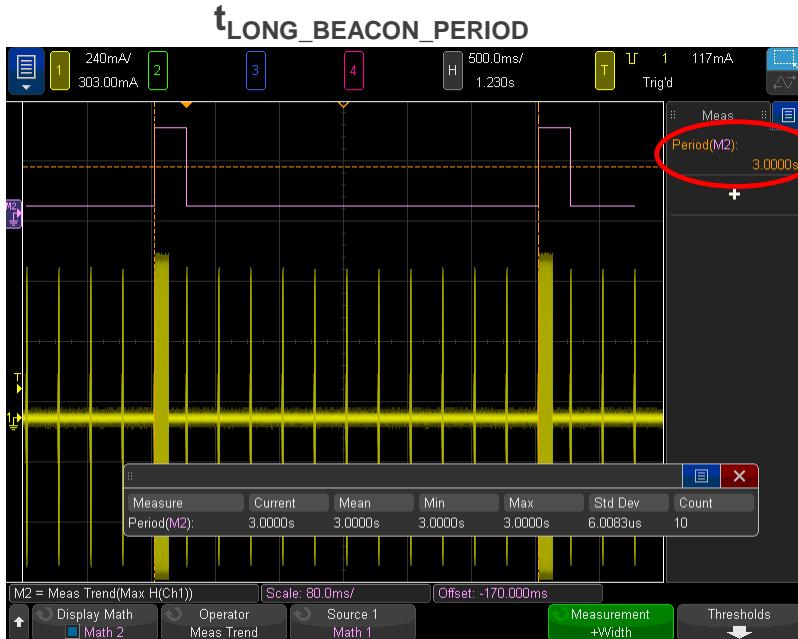
Without Zone Trigger



With Zone Trigger


- Pulse Width (Low > 100 ns) triggers at the beginning of any short beacon (including short beacons concatenated with long beacons).
- *Zone Trigger* qualifies display and measurements on “isolated” short beacons.

Short Beacon Timing Measurements


- “Max Hold” math function with Peak Detect acquisition mode plots positive peaks of beacons.
- Measurements (PW, Period, & Rise Time) performed on math function waveform.
- Custom threshold levels used to measure settling time and slew rate.

Short Beacon Current & Frequency

Note: Waveform averaging cannot be used due to phase jitter.

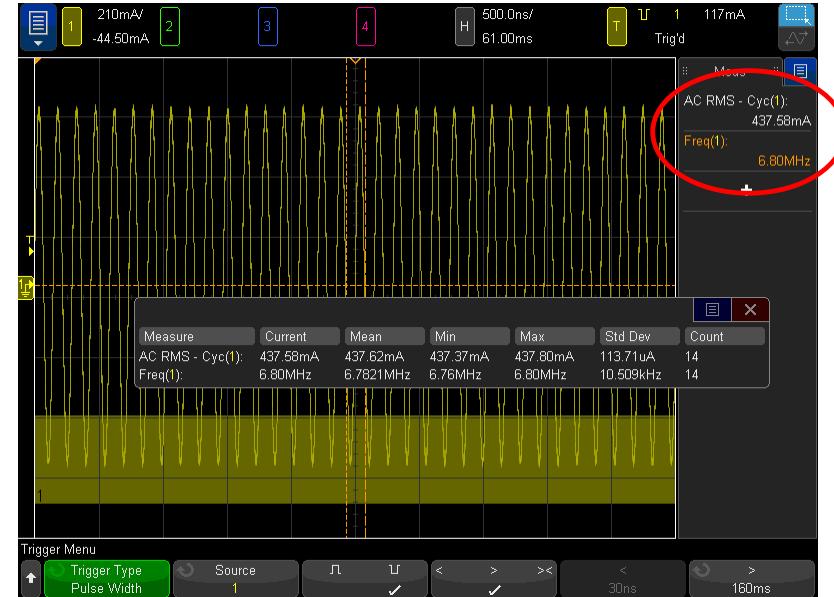
Long Beacon Timing Measurements

- “Max Hold” math function with Peak Detect acquisition mode plots positive peaks of beacons.
- PW “Measurement Trend” math function on “Max Hold” waveform plots long beacons
- “Max Hold” math function with Peak Detect acquisition mode plots positive peaks of beacons.
- Gated PW measurement on vertically expanded of “Smoothing” math function on “Max Hold” plots isolated long beacon IF there is a current level change between short and long beacons. Otherwise, measure short + long beacon width, then subtract short beacon.

Long Beacon Settling Time & Slew Rate

$i_{TX_MAX_SLEW}$

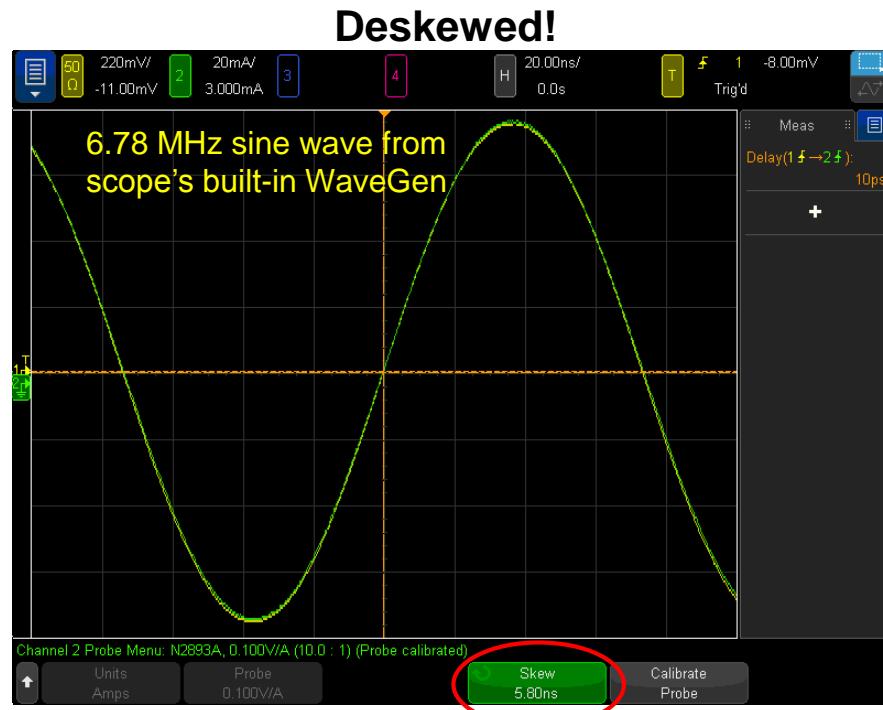
Gated rise time measurement (1% to 90%) on vertically expanded “Smoothing” math function that was applied to the “Max Hold” math function.


$\Delta Y/\Delta X$ (slew rate) cursor readout based on gated rise time measurement (45% to 55%) on Ax+B math function (rms scaling) that was applied to “Smoothing” math function that was applied to “Max Hold” math function.

Long Beacon Current & Frequency

Triggering on Long Beacons

I_{TX} LONG BEACON



1. Trigger at the beginning of any short beacon using PW Trig = Low > 160 ms.
2. Qualify on concatenated short + long beacon using *Zone Trigger*.
3. Zoom-in horizontally after long beacon settling to measure RMS current and frequency.

Note: Waveform averaging cannot be used due to phase jitter.

Resonator AC Power & Efficiency Measurements

- De-skewing is critical to ensure accurate power ($V \times I$) measurements!
- The de-skew fixture (or a 10- Ω resistor) along with the power option automatically calibrates the time delay between voltage and current probe to insure accurate power loss measurements.

Efficiency Measurements (n)

$$\eta_{PTU} = P_{IN} / P_{TX_COIL}$$

$$\eta_{MAX} = \sum P_{RX_REPORTED} / P_{IN}$$

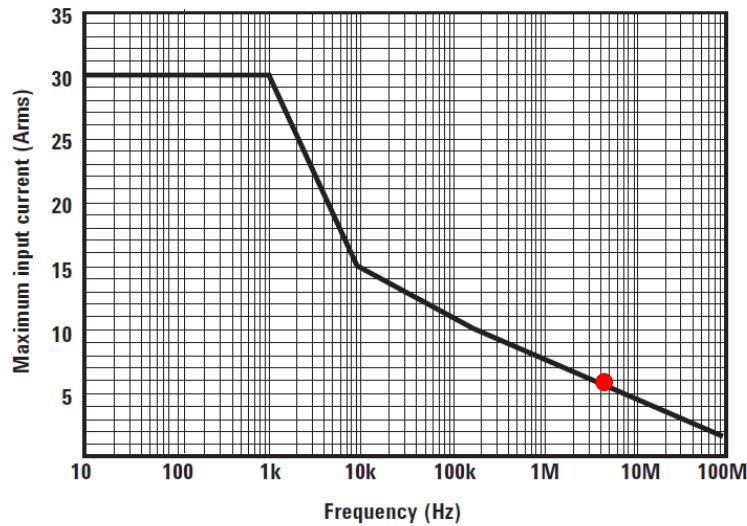
$$RCE = P_{TX_COIL} / P_{RX_COIL}$$

$$\eta_{PRU} = P_{OUT} / P_{RX_COIL}$$

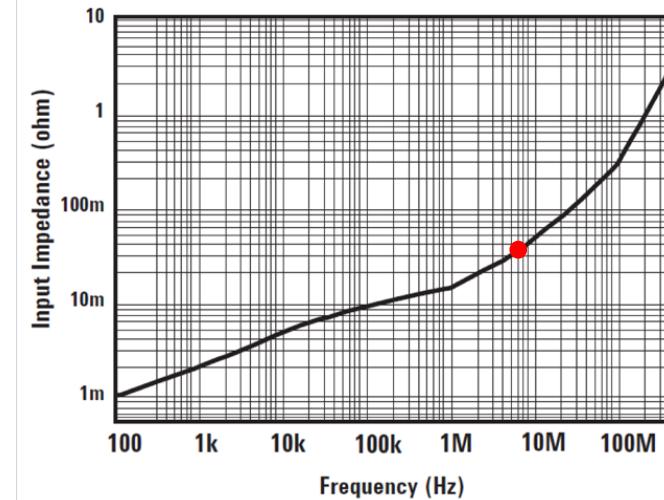
- System efficiency can be optimized by measuring efficiency of each stage of power transfer.
- InfiniiVision oscilloscope's power app option automates probe deskew and efficiency measurements.

Recommended Probes

- AC/DC current probes
 - **N2893A 100MHz, 30Apk¹**
 - **1147B 50MHz, 30Apk¹**
 - N2780B 2MHz, 700Apk (requires N2779A power supply)
 - N2781B 10MHz, 300Apk (requires N2779A power supply)
 - N2782B 50MHz, 50Apk (requires N2779A power supply)
 - N2783B 100MHz, 50Apk (requires N2779A power supply)
 - N2820A 2-ch high-sensitivity (50 μ A/500kHz to 5A/3MHz)
- HV differential active probes
 - N2804A 300MHz, \pm 300V, 100:1, 4M Ω /4pF
 - N2805A 200MHz, \pm 100V, 50:1, 4M Ω /4pF
 - **N2818A 200MHz, \pm 20V, 10:1, 1M Ω /3.5pF**
 - **N2790A 100MHz, \pm 1.4kV, 50:1 or 500:1, 8M Ω /3.5pF**
 - N2891A 70MHz, \pm 7kV, 100:1 or 1000:1, 100M Ω /5pF
 - N2791A 25MHz, \pm 700V, 10:1 or 100:1, 8M Ω /8pF
- Passive probes
 - **N2894A, 700MHz, \pm 200V, 10:1,10M Ω /9.5pF (standard)**
 - 10076C, 500MHz, \pm 4kV, 100:1, 67M Ω /3pF
 - N2870A 35MHz, 1:1 (for output ripple), 1M Ω /39pF
 - 10070D 20MHz, 1:1 (for output ripple), 1M Ω /70pF
- Single-ended active probe (for measuring output ripple)
 - N7020A, 2GHz, 1:1, \pm 24 V offset, 50k Ω (DC)



Selecting the Right Current Probe


Model	Bandwidth	Max Peak Current (AC + DC)	Conversion Factor	Insertion Impedance @ 6.78 MHz	Max Current @ 6.78 MHz
1147B	50 MHz	30 A ¹	0.1 V/A	600-mΩ	~3.5 A-RMS
N2893A	100 MHz	30 A ¹	0.1 V/A	40-mΩ	~5 A-RMS

N2893A De-rate Current vs Freq

N2893A Insertion Impedance vs Freq

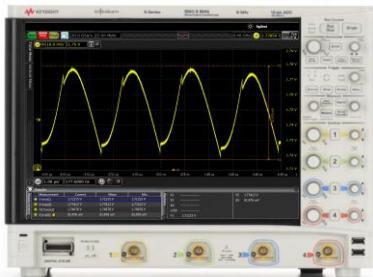
Keysight InfiniiVision X-Series Oscilloscopes

www.keysight.com/find/InfiniiVision

	Bandwidth	Sample Rate	Mem (max)	Seg Mem	Update Rate	MSO Option	Zone Trig	Power Option
2000X	70 to 200 MHz	2 GSa/s	1M	Option	50k/sec	8-ch	No	No
3000X 3000T	100 MHz to 1 GHz	4 GSa/s, 5 GSa/s	4M	Option	1M/sec	16-Ch	No	Yes*
4000X	200 MHz to 1.5 GHz	5 GSa/s	4M	Std	1M/sec	16-Ch	Yes	Yes
6000X	1 GHz to 6 GHz	20 GSa/s	4M	Std	450k/sec	16-Ch	Yes	Yes

FREE InfiniiVision X-Series Application Bundles

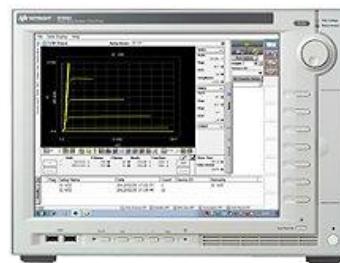
Available June 1 - Nov 30, 2015


Receive a **free** application bundle when you purchase a Keysight InfiniiVision 2000 X, 3000A/T X, 4000 X or 6000 X-Series oscilloscope! This incredible value enables all of the software options available and will fully-equip your next scope purchase.

	2000 X-Series	3000 X-Series	New 3000 T-Series	4000 X-Series	6000 X-Series
Option Number	DSOX2APPBNDL	DSOX3APPBNDL	DSOX3APPBNDL	DSOX4APPBNDL	DSOX6APPBNDL
App Bundle US\$	\$1,250	\$2,750	\$2,750	\$1,500	\$4,650
Total Value US\$	\$ 3,422	\$13, 165	\$12,711	\$18,449	\$23,831
Application software enabled	DSOX2WAVEGEN DSOX2AUTO DSOX2COMP DSOX2EMBD DSOX2MASK DSOX2MEMUP DSOX2SGM DSOXDVM DSOXEDK	DSOX3WAVEGEN DSOX3ADVMATH DSOX3AERO DSOX3AUDIO DSOX3AUTO DSOX3COMP DSOX3EMBD DSOX3FLEX DSOX3MASK DSOX3MEMUP DSOX3MASK DSOX3PWR DSOX3SGM DSOX3VID DSOXDVM DSOXEDK	DSOX3WAVEGEN DSOX3AERO DSOX3AUDIO DSOX3TAUTO DSOX3COMP DSOX3EMBD DSOX3FLEX DSOX3MASK DSOX3PWR DSOX3VID DSOX3DVMCTR DSOXEDK DSOX3SENSOR	DSOX4WAVEGEN2 DSOX4AERO DSOX4AUDIO DSOX4AUTO DSOX4COMP DSOX4EMBD DSOX4FLEX DSOX4FPGAX DSOX4MASK DSOX4PWR DSOX4USBFL DSOX4USBH DSOX4USBSQ DSOX4VID DSOX4DVM DSOX4EDK DSOX4SENSOR	DSOX6WAVEGEN2 DSOX6DVMCTR DSOX6JITTER DSOX6PWR DSOX6MASK DSOX6USBSQ DSOX6VID DSOX6FPGAX DSOX6EDK DSOX6EMBD DSOX6COMP DSOX6USBFL DSOX6USBH DSOX6AUTO DSOX6FLEX DSOX6AUDIO DSOX6AERO

*Bundles include listed options only. Does not include MSO or bandwidth upgrades option. No promotion number required. Prices subject to change.

Keysight products for characterizing power supplies


InfiniiVision & Infiniium S-Series Oscilloscopes

PA2201A IntegraVision AC Power Analyzer

E5061B Network Analyzer

B1506A Power Device Analyzer

N6705B DC Power Analyzer

Thank you for your attendance!

Q & A

