s

Verilog HoA LS 46 S LN SR G
T A BARE R A F] SRR i ik
Nz I ») =
#Y an 1.0 PIEELTF
BF e SR ‘
FHURIH: HOL S 56 10

Verilog E2 AR B ITIES-

(B pa A)
#l4). Verilog Group H 2.
HLHE: H 3
REHE: HH:

Wy

AT B AR B IR F]

WAL MG R

i o)

2000/04/04

yyyy/mm/dd

yyyy/mm/dd

2001/02/28 WRABUIT A, 12ALA5T 170, L5610

W 4

&% Verilog HA Bk ¥t 45 545 TN SR G
AT Il %

H 3 BITIRA ik =

2000/04/04 1.00 W 5E K Verilog Group

2001/02/28 1.01 BT, EEN I =3 — e g K] I

2001/02/28

FRBLITAT s AZBLLTE

>

S

#

=
H

p=i

Y
w’% Verilog AR B &R 315 iﬁiﬁ)\wfﬁé}% 1
H
1R 5
2 LAY BRI T 5
2.1 &hnEagit 6
2.2 BUE s 6
2.2.1 Mik—AY % BRiEIF R 6
2.2.2 R0 7
2.2.3 Locdmht oy 8
2.3 1M s 9
2.4 HARHAE 10
2.5 WHRRAE 10
2.6 BT #AE 11
2.7 WP AL 12
2.7.1 LT RlOR (A R 4 12
2.7.2 S AL TR R il 12
2.7.3 W b EAL . BT A (P fk ke 2% 13
2.7.4 W5 s LA RIEAL . TR Rl (P fih
R 14
275 AP EA . LT R I ik 2% 15
2.7.6 WA EAL . LT bR 1 fil R 2% 16
2.7.7 W S AL B e LT Aok
iofils&s 16
2.7.8 D-Latch (Hif£%8) 17
2.8 ALU 18
2.9 HRLIRANL (FSMD [T 20
2.9.1 figit 20
2.9.20ne-hot % fith 23
2.9.3 Binary %ifith 26
2.10 =AML 30
2.10.1 =7 buffer 30
2.10.2 XA 1/0 buffer 31
3 W g s 31
3.1CRC 4= A 23 e it 31
3.1.1 Mk 31
3.1.2 CRC R Bt = A= 2 141 43 B 5 b 52
ik 32
3.1.3 JFAT CRC-16 K5 fith 1 %3 1) Verilog
HDL 4fit 33
3.1.4 Hi4T CRC-16 45y 4= 2% 1) Verilog
HDL 4ifit 35
3.2 WML ™ Ak rL gk et 37
3.2.1 Wk 37

2001/02/28 WRABUIT A, 12ALA5T $370, L5670

\L/ i

Verilog AR B &R 315 T SO
3.2.2 PHBEALIT 51 A A s I A S 37
3.2.3 8 it BENLF A1 A= 45 11) Verilog
HDL % f4 38

3.3 AU 11 RAM 1 LR 40
3.4 [7]2 FIFO ¥t 41
3.4.1 hfERR 41
3.4.2 Wik 41
3.5 7% FIFO ¥l 44
3.5.1 HEik 44
3.5.2 Wil 44

2001/02/28 WRABUIT A, 12ALA5T ¥4, L5670

7 4
W eritog st it a5 0 A SR B

[_.

il
&

Verilog AT

R HLEE

¥ OB AXFIET RERZEAR LR Verilog HOL AR, 4% % fei RE B I AR HDL B, [
B2 T — &% H B EARD, 1R E MRS

WWIEIE e W RIS TR M E AT, BRIELEAF N M5 1) T 5 FIH TR -

SERBNRR: FEEBE T TI L EXSEXRER TEF 8. 45 Ko ARRIHK

B BRLEH.
SE RN B
G = TRS) KAt H] A f e | R (A
18 P L K
THIZ i
HL 7))
Actel HDL November 1997 | rkY4= Actel A F]
coding Style
Guide
1 ®E

[b FORE (A TE 5 P 5247 VHDL Al Verilog HDL. A RIARHEA G ASIC BETHILAT (s . BIUIR,
T4 Verilog HDL 555, BWRAL VHDL G S, AIMSE— 2w 1) ASIC/FPGA Wit-1- &, fijfLiiiie.
AR 01 AR b R BRI e IR 4R ASIC/IFPGA Bk IEEAH RE, WL ASIC Wit i O TR T
— RIS . 1%L HDL G 5 B I R YW T s
(Verilog HDL AT 1#0F)
(Verilog HDL fH5 455 #i3E)
(Verilog FEA WS W IT 483 15)
(TestBench Zwhdfi A)
RONEM 5 A AN, RE WA VFZ A B, W, 1RSI 75 5 b 0 05 T (K 5 YIMH A
RN, ARRFKARIERE D, ZREIEN, DERAT ST B SoRe
2 BV ERRYIRIT

2001/02/28 WRABUIT A, 12ALA5T $570, 3567

7 4is
W Verilog 5t i 4 5 15 ARG

AT, LEURAML B, B, R, MG, GADES. AR S, FSM %
BRSO BT . WIS, TN R M S s ke, AR C AR R R, &
TR 3 HF .

2.1 2hn=8rig it

/***\

Filename : fulladd.v

Author : Verilog_gruop

Description X Example of a one-bit full add.
Revision : 2000/02/29

Company : Verilog_group

*** /

module FULLADDR(Cout, Sum, Ain, Bin, Cin);

input Ain, Bin, Cin;
output Sum, Cout;
wire Sum;
wire Cout;
assign Sum = Ain ” Bin ” Cin;
assign Cout = (Ain & Bin) | (Bin & Cin) | (Ain & Cin);
endmodule
2.2 {4 E

2.2 1% — B9 % BRI IE =%
F case IFRIL MMM Z Mk iFRE, —REKIZIFESZEZMEKXR: case ME HikFR
—M R ITHIRME, BERLTRBAIRESRMERBIFERMRIEM— LIz S,

/***\

Filename : mux.v

Author : Verilog_gruop
Description : Example of a mux4-1.
Revision : 2000/02/29

Company X Verilog_group

*** /

module MUX(C,D,E,F,S,Mux_out);

2001/02/28 WRABUIT A, 12ALA5T %671, L5671

My s

bpis Verilog HA Bk ¥t 45 545 TN SR G
input C,D.EF; /linput
input [1.0] S; /Iselect control
output Mux_out ; Ilresult
reg Mux_out ;
l/mux

always@(C or D or E or For S)
begin
case (S)
2'b00 : Mux_out=C;
2'b01: Mux_out=D;
2'b10 : Mux_out=E;
default : Mux_out=F;
endcase
end

endmodule

PA_EACRSSEBL I B REQ T B s «

MUX Mux_out

Mmoo

S[1:0]

1 Multiplexor using a case statement
2.2.21F% %0z

DU PR A5 5 Z A ARG, DI, R case 151 5.

/**-k*****-k**\

Filename : decode.v
Author : Verilog_gruop
Description : Example of a 3-8 decoder.

2001/02/28 WRABUIT A, 12ALA5T $700, 56T

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

Revision : 2000/02/29

Company : Verilog_group
\idsisisiisisaishiissisiissisiidsisiisssiiissiissdsiiissssiissdssisisssisiiadsisiidssisiia
module DECODE(AIn,En,Yout);

input En; /lenable

input [2:0] Ain; /linput code

output [7:0] Yout;

reg [7:0] Yout ;

always@(En or Ain)
begin
if('En)
Yout =800 ;
else
case (Ain)

3'h000 : Yout = 8'h0000_0001 ;
3'h001 : Yout = 8'h0000_0010 ;
3'0010 : Yout = 8'h0000_0100 ;
3'0011 : Yout = 8'0000_1000 ;
3'b100 : Yout = 8'b0001_0000 ;
3'h101 : Yout = 8'h0010_0000 ;
3'h110 : Yout = 8'h0100_0000 ;
3'111 : Yout = 8'1000_0000 ;
default : Yout = 8'0000_0000 ;

endcase

end

endmodule

2.2 3L

[e ek ok ke ek ke ek ek ok ke ek ke ek ok ke ek ok ke ek ok Ak
Filename : Prio-encoder.v
Author : Verilog_gruop
Description : Example of a Priority Encoder.
Revision : 2000/02/29

2001/02/28 WRABUIT A, 12ALA5T $871, 56T

7 4
W eritog st it a5 0 ARG

Company : Verilog_group

*** /

module PRIO_ENCODER (Cin,Din,Ein,Fin,Sin,Pout);

input Cin,Din,Ein,Fin; /[input signals

input [1:0] Sin; /linput select control
output Pout; /loutput select result
reg Pout;

/l Pout assignment

always @(Sin or Cin or Din or Ein or Fin)

begin
if (Sin == 2’b00)
Pout =Cin;
else if (Sin == 2’b01)
Pout = Din;
else if (Sin == 2’b10)
Pout = Ein;
else
Pout = Fin;
end
endmodule

PA_EACRSSEHL R B RE QT B -

Fin

Ein .
/ D'n/ Ci Pout
L

Sin=01 sin=0p

Sin=10

1 Hif B e s

2. 3758
/**\
Filename : count_en.v
Author : Verilog_gruop

2001/02/28 WRABUIT A, 12ALA5T $F91, 56T

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

Description : Example of a counter with enable.
Revision : 2000/02/29
Company : Verilog_group

\ * * * * * * * * * * * * * 7(/

module COUNT_EN (En,Clock,Reset,Out);

parameter Width =8;
parameter U _DLY =1,
input Clock , Reset, En ;

output [Width-1:0] Out;

reg [Width-1:0] Out;;
always@(posedge Clock or negedge Reset)
if (IReset)
Out <=8h0;
else if (En)
Out <=#U DLY OQut+1;

endmodule
2 AHARBAE
shishidssisisisikiisdsssisiiiiisssissisiiiiiddsssiisiiddssssisiiisddsssiiiiiad
Filename : arithmetic.v
Author : Verilog_gruop
Description : Example of a arithmetic include +, -, *, /.
Revision : 2000/02/29
Company : Verilog_group

\ * * * * * * * * * * * * * 7(/

module ARITHMETIC (A, B, Q1, Q2 ,Q3, Q4);

input [3:0] AB; /linput operator

output [4:0] Q1; /loutput sum, with carry bit
output [3:0] Q2; /loutput sutract result
output [3:0] Q3; /loutput quotion

output [7:0] Q4; /Iproduct

2001/02/28 WRABUIT A, 12ALA5T %10 71, 5671

W,

S AL

Verilog 24 LB BT 45 515

[k

it
IS

reg [4:0] Q1;
reg [3:0] Q2,0Q3;
reg [7:0] Q4;

/[arithmetic operate

always@(A or B)
begin
Ql=A+B;
Q2=AB;
Q3=A2;
Q4=A*B;
end
endmodule
2.5 iR E
[rFFFkdk kR koot ook ookt ook ook ook dokokookokokookookokookookokookookokook\
Filename relational.v
Author Verilog_gruop
Description Example of a relational operate
Revision 2000/02/29
Company Verilog_group
\kk * * * * * * * *

module RELATIONAL(A, B,Q1,Q02,Q3,Q4) ;

input [3:0] A,B; /loperator
output Q1,02,Q3,04; [Iresult
reg Q1,Q2,Q3,04;
/lcompare
always@(A or B)
begin
Q1 =A>B;
Q2 =A<B;
Q3 =A>=B;
2001/02/28 WU, RALH 11T, 56T

7 i
W Verilog HA LB B4l 5 15 A S B

if (A <= B)
Q4 =1;
else
Q4 =0;
end
endmodule
2.6 AL HAE
liaiskakisisiisiskisisidsiaisishiisiisisiiishiasdaiidsiiisiiissiasiiisisisissiiassisissiiisiid
Filename : shifter.v
Author : Verilog_gruop
Description : Example of a shifter
Revision : 2000/02/29
Company : Verilog_group

\ * * * * * * * * * * * * * 7(/

module SHIFT (Data ,Q1, Q2) ;
input [3:0] Data;
output [3:0] Q1,Q2;

parameter B=2;
reg [3:0] Q1,Q2;
always@(Data)
begin
Q1 =Data<<B;
Q2 =Data>>B;
end
endmodule
2.7 FRaRF
— AR (TR SRS) U AL RS . B R P U AR I, A SR R
ik R A5 A

i A s AR A A A7 s AERE PP R ARDLART BT BT B (4800, VERILOG ARl b J5EAR s

2001/02/28 WRABUIT A, 12ALA5T %12 70, 5670

My s

Bhus Verilog HA Bk ¥t 45 545 AR G
(posedge Clk) —meee- NeiRA:
(negedge Clk) - TReus

R THIZE AP AN) 220 fl A B (R O
2.7.1 LT ok B ik o
ST A D ik 5,

/***\

Filename : dff.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop.
Revision : 2000/03/30

Company : Verilog_group

***/

module DFF (Data, CIk, Q);

input Data, Clk;
output Q;
reg Q;
always @ (posedge CIk)
Q <=Data;
endmodule
Dihedn &

Data—p ot Q

Clk —pCK

1 D ks
2.7.2 s EAL TR R f k2

[FFFHx * * * * * * * * * * * * *\

Filename : dff_async_rst.v
Author : Verilog_gruop
Description : Example of a Rising Edge Flip-Flop with Asynchronous Reset.

2001/02/28 WRABUIT A, 12ALA5T %1371, 5611

\\\\N,"”/é Verilog A< i Bk B it i 315 iﬁiﬁﬁ)\)‘c%’éﬁﬁ
Revision : 2000/03/30
Company : Verilog_group
\idsisisiisisaishiissisiissisiidsisiisssiiissiissdsiiissssiissdssisisssisiiadsisiidssisiia
module DFF_ASYNC_RST (Data, Clk, Reset, Q);
input Data, CIk, Reset;
output Q;
parameter U _DLY =1,
reg Q;
always @ (posedge Clk or negedge Reset)
if (~Reset)
Q <= #U DLY 1'h0;
else
Q <=#U DLY Data;
endmudule
Dietn Kl
paa —P Qf-0Q
ck —pCK
R
Reset ——
1 b EAID ks
273 A BAL . TR I fid e s
lisidesisisiisisaisisiaisisidaisiidsisiidsisiissisiiidsisiiidsisisissisisisissishisisssisisidaisiinia
Filename : dff_async_pre.v
Author : Verilog_gruop
Description : Example of a Rising Edge Flip-Flop with Asynchronous Preset.
Revision : 2000/03/30
Company : Verilog_group

\ * * * * * * * * * * * * * 7(/

module DFF_ASYNC_PRE (Data, CIk, Preset, Q);
input Data, CIk, Preset;

2001/02/28 WRABUIT A, 12ALA5T %14 71, 5670

7 4
W eritog st it a5 0 ARG

output Q;
parameter U _DLY =1;

reg Q;
always @ (posedge Clk or negedge Preset)
if (~Preset)
Q <= #U DLY 1'b1;
else
Q <=#U _DLY Data;
endmudule
Dihedn &

Preset——

0O
Data—p F ot Q

Clk —fCK

1 HREMD ke
274 S AT AN E AL T i R fi e 2%

[FHFFHx * * * * * * * * * * * * *\

Filename : dff_async.v
Author : Verilog_gruop
Description : Example of a Rising Edge Flip-Flop
with Asynchronous Reset and Preset.
Revision : 2000/03/30
Company : Verilog_group

*** /

module DFF_ASYNC (Data, CIk, Reset, Preset, Q);

input Data, Clk, Reset, Preset ;
output Q;

parameter U_DLY =1;

reg Q;

always @ (posedge Clk or negedge Reset or negedge Preset)

2001/02/28 WRABUIT A, 12ALA5T %1571, 5671

My s

waane Verilog FEAHLESEERHE 3H TSR G

if (~Reset)
Q <=100;

else if (~ preset)
Q <=1'hl;

else
Q <=#U_DLY Data;

endmudule
et T Kl
Preset——

O
Data—p F QT Q

Clk —pCK
R

Reset —I°

1 iR EAL D ik Ay
2.7 55 AL AL TR A R ik A %

[FFFHx * * * * * * * * * * * * *\

Filename : dff_sync_rst.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with Synchronous Reset.
Revision : 2000/03/30

Company : Verilog_group

\-k**-k-k** /

module DFF_SYNC_RST (Data, CIk, Reset, Q);

input Data, CIk, Reset;
output Q;
parameter U DLY =1;
reg Q;
always @ (posedge Clk)
if (~Reset)
Q <= #U DLY 1'b0;
else
Q <=#U DLY Data;
endmudule

2001/02/28 WRABUIT A, 12ALA5T %516 71, 56 71

My s

P Verilog JEA B3RS THHIN SR G 5
Dhrew ™ E:
Reset
0
D QT Q
Data
Clk —pCK

L PP RALD filkeds
2,764 A EAL TR A A ik A %

[FFFHx * * * * * * * * * * * * *\

Filename : dff_sync_pre.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with Synchronous Preset.
Revision : 2000/03/30

Company : Verilog_group

\-k**-k-k** /

module DFF_SYNC_PRE (Data, CIk, Preset, Q);

input Data, CIk, Preset;
output Q;

parameter U DLY=1;

reg Q;

always @ (posedge Clk)

if (~Preset)
Q <=#U_DLY 1'b1;
else
Q <=#U DLY Data;
endmudule
Dietn &l

2001/02/28 WRABUIT A, 12ALA5T %17 71, 5611

7 4
W eritog st it a5 0 ARG

L AP EAII D il a4
2.7. 7 S AN BIAERE . BTl A (Kl A 2%

[FFFHx * * * * * * * * * * * * *\

Filename : dff ck_en.v
Preset
1
D Q- Q
Data — ~
Clk —pCK
Author : Verilog_gruop
Description : Example of a Rising Edge Flip-Flop with Asynchronous Reset
and Clock Enable.

Revision : 2000/03/30
Company : Verilog_group

*** /

module DFF_CK_EN (Data, CIk, Reset, En, Q);

input Data, CIk, Reset, En;
output Q;
parameter U DLY =1;
reg Q;
always @ (posedge Clk or negedge Reset)
if (~Reset)
Q <=1h0;
else if (En)
Q <=#U DLY Data;
endmudule
et K&l

2001/02/28 WRABUIT A, 12ALA5T %18 71, 5611

7 4
W eritog st it a5 0 ARG

1 b BAL, AERES D Al 2%
2.7.8D-Latch (#ifF#%)
BAE S T UGS E, 7 ASIC BUE T, BIAE AR oRIE 2 [, AnAIANN SE . DFT)k, B, 7
SR BET FP 0 2R G 1 2 1) IR

Data —p QFQ
En —[E
Clk —pCK
R
Reset ____1°

module d_latch (enable,data,y);
input enable ;
input data;
output y;
reg y;

always @(enable or data)

if (enable)
y <= data;
endmodule
et T Kl
data —pD QTYVY
enable— [T
1 D-Latch
2.8ALU
[HAHK* * * * * * * * * * * * * \
Filename : alu.v
Author : Verilog_gruop
Description : Example of a 4-bit Carry Look Ahead ALU

2001/02/28 WRABUIT A, 12ALA5T %19 71, 5671

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

s
IO

Revision

Company

2000/02/29

Verilog_group

\-k**-k-k** /

module ALU(A, B, Cin, Sum, Cout, Operate, Mode);

[linput signals

input
input
input
input
output

output

[3:0] A, B;
Cin;
[3:0] Operate;
Mode;

[3:0] Sum;
Cout;

// two operands of ALU
/lcarry in at the LSB
//determine f(.) of sum = f(a, b)

[farithmetic(mode = 1'b1) or logic operation(mode = 1'b0)

/Iresult of ALU
/lcarry produced by ALU operation

/I carry generation bits and propogation bits.

wire [3:0] G,P;
I/ carry bits;
reg [2:00 C;

/I function for carry generation:

function gen

endfunction

input A, B;
input [1:0] Oper;

2'h01: gen= A & B;

2'010: gen = A & (~B);

begin
case(Oper)
2'b00: gen = A;
2'b11: gen = 1'b0;
endcase;
end

2001/02/28

FRBLITAT s AZBLLTE

%520 71, 5671

Administrator
高亮
操作数

7 4
W eritog st it a5 0 ARG

/I function for carry propergation:
function prop

input A, B;

input [1:0] Oper;

begin
case(Oper)
2'b00: prop = 1;
2'h01: prop = A | (~B);
2'b10: prop = A | B;
2'b11: prop = A;
endcase;
end

endfunction

I/ producing carry generation bits;

assign G[0] = gen(A[0], B[0], Oper[1:0]);
assign G[1] = gen(A[1], B[1], Oper[1:0]);
assign G[2] = gen(A[2], B[2], Oper[1:0]);
assign G[3] = gen(A[3], B[3], Oper[1:0]);

I/ producing carry propogation bits;

assign P[0] = por(A[0], B[0], Oper[3:2]);
assign P[1] = por(A[1], B[1], Oper[3:2]);
assign P[2] = por(A[2], B[2], Oper[3:2]);
assign P[3] = por(A[3], B[3], Oper[3:2]);

Il producing carry bits with carry-look-ahead;
always @(G or P or Cin, Mode)
begin
if (Mode) begin
C[0] = G[0] | P[0] & Cin;
C[1] = G[1] | P[1] & G[0] | P[1] & P[0] & Cin;

2001/02/28 WRABUIT A, 12ALA5T %2170, 5670

Administrator
高亮
超前进位法

7 i
W Verilog HA LB B4l 5 15 A S B

C[2] = G[2] | P[2] & G[1] | P[2] & P[1] & GJ0] | P[2] & P[1] & P[0] & Cin;
Cout = G[3] | P[3] & G[2] | P[3] & P[2] & G[1] | P[3] & P[2] & P[1] & GJ0] | P[3] &
P[2] & P[1] & P[0] & Cin;
end
else begin
C[0] = 1'b0;
C[1] = 1'b0;
C[2] = 1'b0;
Cout = 1'b0;
end

end

/I calculate the operation results;

assign Sum[0] = (~G[0] & P[0]) ~ Cin;
assign Sum[1] = (~G[1] & P[1]) ~ CI0];
assign Sum[2] = (~G[2] & P[2]) ~ C[1];
assign Sum[3] = (~G[3] & P[3]) ~ C[2];

endmodule
2.9 FRRAESNL (FSMD BB
2.9. 1Mk

ARGRENL (FSM) 2Bl WK ik, i s AN A ri s . B BRARESHLI 3 — 20 2
5E KT Moore RSN /&K Mealy JRAHL. (Mealy 7. RS HEZR ARSI FRIRASA O, i HEE S
fH5 5% Moore B: REMFALHUAPRER IO o WL EIhAERUE, AT —FhalnT LS BRI
ifie ARABATTR I P AT, BTEL, R PR SRR AN LI SEAR R H A B oe . /e, JEMmATm
FEX A H—F

1. Moore RZSHL: ZER Ik (A RANTTEIN 2 5, s BIREE o Hi S dE AN e B I B R A
TRFFREME, RIMEAE A B NG S T, B s S AR SO i (1 5 iR 22 3] /N I b
FIMA Re et ok . JEEAFETH 23 9F, S Moore RAS LI B ZRFAL .

2. Mealy JR&HL: Tt HZ A ANTEN, TN AT CAE I AT — I A4k, Il A5 4 bR
A L Moore IRZSHLIR A HORASEZAT AN FINENA . MG SIS T e 2 e A 5 b

3. % — ik, {fH] Moore JRAHLBE T AEL LUAE T Mealy IRAEHLZ H—L04RE .

2001/02/28 WRABUIT A, 12ALA5T %522 71, 5670

Administrator
高亮

Administrator
高亮

Administrator
高亮

. s

Verilog 24 LB BT 45 515 THIA SO S 5

AR AATT (0 AR B v) R) FARS B, e T DA s A IS ROIR SR S BT i . — HLif s IRAS
Bl T RS RS R . IUAEE AT — D AR R GRS B IESE, Frik, T seBlF —2)
BB, AT LA IE AN R IR Fe 4 o AR BOEAR 25 ML BE T o FEAL) I HL s R IRAS B 45 LI, A P LA
W R] DA Bh B AT A v i R R A L T R R . BN U AR B IR AS BN AU BT S 1 SR A 6
HAME o A5 RURARAT 2 AN B A S I A ANBE R IN A B (RN A B AT AS SRV

TER A TETUAIRS AR RS S5, i LUIT AR A verilog HDL Sk ¥ iE LS T o

| Qurr_st
—r Next_st .
— NeXt_St—— r Combi)
Logic — Log'gSt gc

= s ———
ok Logic

1 RSP ERIZ R
FEBLV A R S E R LR U5 T -
1. full case spec
B SCEATIRES, MIMEA RS T REAE S PN B, H I S 25 S A 1) Latch, B4 Latch
WRESATR: a. WOMALER; b. 5P Timing Al
always @(Curr_st)
begin
case (Curr_st)
STO : Next_st = STI;
ST1 : Next st = ST2;
ST2 : Next_st = STO;
endcase

end

2001/02/28 WRABUIT A, 12ALA5T %2370, 5670

Administrator
高亮

W,

S AL

Verilog 24 LB BT 45 515

s
IO

always @(Curr_st)

1 WX full-case

begin
case (Curr_st) //synthesis full case
STO : Next st = STI1;
ST1 : Next st = ST2;
ST2 : Next st = STO;
default : Next st = STO;
Curr_st _:>
_ o) Q [S J
o D
— - Next_st
— 0)r___
__:;y_______ Q 1 D 1
_ﬂ:>
endcase
end
Curr_st TJ > D 1
- Next_st
Do D +—

2. parallel case spec
T ERAN [B I 2 PR s
case ({En3, En2, Enl})

3 b??1 : Out = Inl;

1 XM full-case

2001/02/28 WRABUIT A, 12ALA5T

%524 71, 5670

[/ Y
W \eritog HA ik B4 51 ARG
3 b?1? : Out = In2;
3 b1?? : Out = In3;
endcase
Enl ——|—
In1 —_— T j
En2 D — out
In2 {———
En3 D
In3
1 PR parallel—case
case ({En3, En2, Enl}) //synthesis parallel case
3 b??1 : Out = Inl;
3 b?1? : Out = In2;
3’ b1?? : Out = In3;
endcase

Enil ————————‘——

Inl _— > {___

En2 _____—j

En3 —
IN3 ——)

1 XM parallel-case

3. ZEIEEH] casex

casex fEZR TN, WA Z, X4 Dont cares, 2 FHETIHAE A& WAEEHHILX, —E
LN TP eR N LSUIR

4. HEREAEREEI I, FRRASHLBE 70 B R, T SR MRS LI L -

5. FEAATARIENSETE A, LOERER S EN. &0, AR 0 A2 RTL 24K)
RE 0 UEARME A H) R PTAE o

2001/02/28 WRABUIT A, 12ALA5T %2571, 5671

W tut
Wb g sepmssizsin g WA SCRI

IR MRS PR 4 1], 78 Verilog HDL H 3647 T] BURT AN R 758t ZR &S

1 RESH A
2.9.20ne-hot %t
[* * * * * * * * * * * *\

Filename : one_hot_fsm.v

Author : Verilog_gruop

Description : Example of a one-hot encoded state machine.
Revision : 2000/02/29

Company : Verilog_group

*** /

module ONE_HOT_FSM (Clock, Reset, A, B, C, D, E,
Single, Multi, Contig);

input Clock; /Isystem Clock

input Reset; /lasync Reset, active high
input A /B,C,D,E; /[FSM input signals
output Single, Multi, Contig; /[FSM output signals

//define output signals type

reg Single;
reg Multi;
reg Contig;

2001/02/28 WRABUIT A, 12ALA5T %526 71, 5611

7 4
W eritog st it a5 0 ARG

/I Declare the symbolic hames for states

parameter [6:0] /I enum STATE_TYPE one-hot
S1 = 7'b0000001,
S2 = 7'b0000010,
S3 = 7'b0000100,
S4 = 7'b0001000,
S5 = 7'b0010000,
S6 = 7'b0100000,
S7 = 7'b1000000;
parameter U_DLY =1

/I Declare current state and next state variables
reg [2:0] Curr_st;
reg [2:0] Next st;

/[Curr_st assignment, sequential logic

always @ (posedge Clock or posedge Reset)

begin
if (Reset)
Curr_st <=S1,
else
Curr_st <=#U DLY Next_st;
end

/lcombinational logic

always @ (Curr_stor AorBor CorDorD or E)

begin
case (Curr_st) [/Ifull_case
Sl:
begin
Multi =1'b0;
Contig =1'b0;
Single =1'h0;

2001/02/28 WRABUIT A, 12ALA5T 5527 71, 5671

My s

waane Verilog FEAHLESEERHE 3H TSR G
if (A & ~B & C)
Next_st =S2;
else if (A & B & ~C)
Next_st =54,
else
Next_st =S1;
end
S2:
begin
Multi =1'hl;
Contig =1'h0;
Single =1'b0;
if (ID)
Next_st =S3;
else
Next_st =S4;
end
S3:
begin
Multi = 1'h0;
Contig =1b1;
Single =1'b0;
if (A'| D)
Next_st =S4;
else
Next_st =S3;
end
S4:
begin
Multi =1'b1;
Contig =1b1;
Single =1'h0;
if (A&B &~C)

2001/02/28 WRABUIT A, 12ALA5T %528 71, 5671

\\\\\!l,",,/é Verilog A< i Bk B it i 315 iﬁiﬁA)fo%ifEﬁ
Next_st = S5;
else
Next_st =S4;
end
S5:
begin
Multi =1h1;
Contig =1'b0;
Single =1'h0;
Next_st = S6;
end
S6:
begin
Multi =1'h0;
Contig =1b1;
Single =1'b1;
if ('E)
Next_st =S7,
else
Next_st = S6;
end
S7:
begin
Multi =1'b0;
Contig =1b1;
Single =1'h0;
if (E)
Next_st =S1,
else
Next_st =S7;
end
endcase
end
2001/02/28 FRBLITAT s AZBLLTE %29 1T, 3£ 56 Ul

7 4
W eritog st it a5 0 ARG

endmodule

2.9.3Binary % it

/***\

Filename : binary_fsm.v

Description : Example of a binary encoded state machine.
Revision : 2000/02/29

Company : Huawei Ltd.

\ * * * * * * * * * * * * * 7(/

“timescale 1ns/ 10ps
module binary (Clock, Reset, A, B, C, D, E,
Single, Multi, Contig);

input Clock; /Isystem Clock

input Reset; /lasync Reset, active high
input A /B,C,D,E; /[FSM input signals
output Single, Multi, Contig; //FSM output signals

//define output signals type

reg Single;
reg Multi;
reg Contig;

/I Declare the symbolic names for states

parameter [2:0] /lenum STATE_TYPE binary
S1 = 3'h001,
S2 = 3'h010,
S3 = 3h011,
S4 =3'b100,
S5 = 3101,
S6 =3'b110,
S7 =3bll1;

parameter U_DLY =1;

/I Declare current state and next state variables

reg [2:0] Curr_st;

2001/02/28 WRABUIT A, 12ALA5T %530 71, 5671

7 4
W eritog st it a5 0 ARG

reg [2:0] Next_st;
/[Curr_st assignment, sequential logic

always @ (posedge Clock or posedge Reset)

begin
if (Reset)
Curr_st <=891;
else
Curr_st <=#U_DLY Next_st;
end

/lcombinational logic

always @ (Curr_stor AorBorCorDorDorE)

begin
case (Curr_st) [/[full_case
Sl:
begin
Multi =1'b0;
Contig =1'b0;
Single =1'h0;
if (A & ~B & C)
Next_st =S2;
else if (A & B & ~C)
Next_st = 54,
else
Next_st =S1,;
end
S2:
begin
Multi =1'b1;
Contig =1'h0;
Single =1'b0;
if (ID)
2001/02/28 FRBLITAT s AZBLLTE %31 0T, 3£56 5

W,

S AL

Verilog 24 LB BT 45 515

[k

it
IS

Next_st
else
end
S3:
begin
Multi =1'h0;
Contig
Single =1'b0;
if (A|D)
Next_st
else
Next_st
end
S4:
begin
Multi =1'bl;
Contig =1b1;
Single =1'b0;
if A& B&~C)
Next_st
else
Next_st
end
S5:
begin
Multi =1'bl;
Contig =1'h0;
Single =1'b0;
Next_st
end
S6:
begin

Next_st

=1'b1;

S6;

S3;

S4;

2001/02/28

FRBLITAT s AZBLLTE

%3271, 5671

W,

LETES

Verilog 24 LB BT 45 515

Multi

Contig
Single
if ('E)

else

end

S7:

begin
Multi
Contig
Single
if (E)

else

end
endcase
end

endmodule

LA_EA I H] Verilog HDL e vl >R SEHL) FSM HLES,] F T 1 R 12 IR -

=1'b0;

=1b1;

=1h1;
Next_st = S7,
Next_st = S6;

=1'b0;

=1h1;

=1'h0;
Next_st =S1,;
Next_st =S7;

Logic

| Qurr_st
—
Next_st
—— N 2 Qurr_st
Logic] Logic
Reset Conmbi & sync
Clock Logic

1 FSMiZ#AEE

2001/02/28 WRABUIT A, 12ALA5T

%3371, 5671

W,

4L VeriIOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

s
IO

2. 10=8 R4k

2.10.1=72 buffer

=2 buffer J2 4547 FIMLAR L AE) U, bUF . ZE A SRAE R, RV R 4354

i buf .
module TRISTATE (E, A)Y);
input E,A;
output Y;
reg Y;

always @(E or A)

begin
if (E)
Y =A;
else
Y=1bZz
end
endmodule
I
module TRISTATE(E,A,Y);
input E,A;
output Y;

assign Y =E? A:1’bZz;

DifeEtnt
E
A_I$J>E'
1 =Zbuffer

2.10.2X[7] 1/O buffer
XU] S AT N B, AR A R

IR =28 1 i

2001/02/28 WRABUIT A, 12ALA5T %34 71, 5670

Administrator
高亮

Administrator
高亮

i

7 A
W vertog szt v ASChigi s

-
ap
a5

module BIDIR (E,A)Y,B);

input E,A;

output B;

inout Y; //in and out bus
triY; I/l net type s tri
assignB =;

assign Y = E? A:l’bz;

endmodule

el b

Y

]

1 XA MEL buffer

3 HAHRBwRT

3.1CRC B = 28 B ¥ it
3.1. 1Mk
TOA G B AE 3R A 2 e rp s P 0 22 A 7 3, S SR B I T4 R e A T 22

W, JURAIERZ, R AL S R IOP LR . PEFRTCARZAY (Cyclic Redundancy Codes, fi#j#k CRC) & —
T I U AR St , CRC AZHG M FEA SR . CRC AJ (i — Bk Ay Ak e 22 10 2 1) 450 2 B i st 1y — 3o 4
HINTF, FEEIRFE, RESEDICRRWGEMBESE R Z, 7R MBI EEAT K% . e, Bt
PR A — B LR, RMARBEE AT WRKENZE, FAAERIER, BN AR Ok A%
B ZHERRER .
3.1.2CRC 5 ht = A ds 1 70 B L5 A F S B

fE7 4 CRC S SI, FHEMBIBREZH . — MRk, JE% RMECFIATERER, 2 S B
s LWERRIUY o BRI, 48 BRI B e s — e Ao, X CRCIZ AR R, bR RN
AR E I RE W N TR

1,0001,0000,0010,0001 = x* + x*2 +x 5 + 1

2001/02/28 WRABUIT A, 12ALA5T %35 1, 56700

Administrator
高亮

7 i
W Verilog HA LB B4l 5 15 A S B

EZ AL R, P AR R A2 I, 20 R B 3 X A . D
HEAERZ T, GAEMZ A, Q AMBEIA, RAKBEZIA. 7L CRC KL, Hiinz
TR D AR A X, X L n G AE R K G iR = I, B CRC MK . XA S 228 n (45
B, TATHTLUH CRC KAV Z R G I n AN 0, ALReH A8 M 2 5. i T 3B v Rty 2
SEM I, BT LA A B i 2 TN B AR T G RS . B R AR A

(XD) +R= (QG) +0

TER, AR BT — 2 0 R B AL Ds 5 —84> (RS n 40 HRER. AR Z
AW B2 G 26, B ES, KB 0. WRAFAN 0, WIS & AR, Bl
i AL

AN A 2 A AR e T, TR S R, JATT L AR 75 Lk £ 5 18 1K A 2 I3
i, CRC-16 M4l % Wik A «

G(X) =x®+xZ+x°5+1

CRC RSt p= A= 5 4r WPl Hi4T CRC AZHGAD = A 2% 1 JFAT CRC BRI A5 7= £ 8% o« A SC I 10 A2 IR AT
CRC 8 it A= 4% ol T iH5LIFAT CRC I 3| T Hi47 CRC 1y — 48 AR, T RALERSEUF— T #R 4T CRC 1™
£,

WH, CRC KRS E] LU I 26 RS 7 25 A7 B0 A0 S al [IR A, SRR RS T A7 38— KBS — AL, SEHLbR
BIiRe, B RN ML D RE . WREEECK 17, WA BR B S B AL PR, RN A A
AL, WA N EREBARM AT . WREECh™ 07, WM AR ERA B0 o BAT
CRC-16 B8 fith = s 1) Js B an B 2 Fross

Ragister 15 Register 11

XORO Register 10 Register 4
XORS sl i XOR2 Registar 3 Registar 0
1

o aQ o aQ o a b oal— CRC Out

aas o a D Q

LR L}
GHD -
XOR16

/(_(Data In

K2 HRAT CRC-16 B0 fith A 2 I L]

LEWVT AT CRC IR~ AL 2R A I, FRATTAT LR AT HR 4T CRC IR 1 JEAL, FHERPERE AL 45 A7 4 1K 7
AT CRC LSS . 5 HAT CRC ARSI = A= 25 AR A&, HAT CRC ARSI 7= £ 4% 16 A7 CRC [l IR} 4
H, BTCAERE— AR R, B3 AF 8 — IR A% 16 . SEFr b, B AL 5 4725 A il BE A1 — NI)
WINFE 16 A7, PrLAIX o v 2 A S8 R e . 34 CRC AU = Ak 45 th 41 52 4R A 16 N4 HH 25 A7
SRR, I ENLES, W R

2001/02/28 WRABUIT A, 12ALA5T %36 71, 561

7 4
W eritog st it a5 0 ARG

3.1.3Ff47 CRC-16 f&4hH ™ A= 28 1¥) Verilog HDL %64
[k Rk kA A A Ak kA A A A AR A A AR AR A A A A AR KA KA
* Filename : crc16_para.v
* Auther : Verilog group
* Description : This module is used to check CRC_16 of 8-bits cell
* data, the generator polynomial is x*16+x"12+x"5+1.
* Called by :
* Revision History : 2000-5-5 Revision 1.0
* Email : zhangnb@sz.huawei.com.cn
* Company : Huawei Technology Inc.

* Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

*kkk * * * * * * * * * * * * * 7(/

I
/I TOP MODULE
I
module CRC16_PARA(

Reset , //Reset signal

Gcelk , //Clock signal

Soc , //Start of cell
Data_in, //input data of cell

Crc_out //output CRC signal

)
I
/ SIGNAL DECLARATIONS
I
input Reset ;
input Gelk
input Soc ;

input [7:0] Data_in;
output [15:0] Crc_out ;

2001/02/28 WRABUIT A, 12ALA5T %37 71, 5670

Administrator
高亮
生成多项式

W,

4L VeriIOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

s
IST T

1
I/ SIGNAL DECLARATIONS
I

wire Reset ;
wire Gelk
wire Soc

wire [7:0] Data_in;
reg [15:0] Crc_out;

reg [15:0] Crc_tmp;

reg Temp ;
integer ij.kl;
1

/l PARAMETERS
I

parameter U_DLY=1

I

I/l Crc_out signal

It

always @ (posedge Reset or posedge Gelk)

begin
if (Reset)

Crc_out <= #U_DLY 16'0 ;

else if (Soc == 1'b1)

Crc_out<=#U DLY 16'b0 ;

else

Crc_out <=#U_DLY Crc_tmp;

end

Il
/l Crc_tmp signal

2001/02/28

FRBLITAT s AZBLLTE

%38 71, 5671

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

I

always @(Crc_out or Data_in)
begin
Crc_tmp = Crc_out;
for (i=7;i>=0;i=i-1)
begin
Temp = Data_in[i] * Crc_tmp[15] ;

for (j=15;j>12;j=j-1)
Crc_tmp[j] = Crc_tmp[j-1] ;
Crc_tmp[12] = Temp ~ Crc_tmp[11] ;

for (k=11;k>5;k=k-1)
Crc_tmp[K] = Crc_tmp[k-1] ;
Crc_tmp[5] = Temp ~ Crc_tmp[4] ;

for (1=4;1>0;1=I-1)
Crc_tmp[l] = Crc_tmp[l-1] ;
Crc_tmp[0] = Temp ;
end

end

endmodule

3.1.4H1T CRC-16 R4 h5 ™ A= 28 1Y) Verilog HDL %65

/**-k***

* Filename : crc16_ser.v

* Auther : Verilog group

* Description : This module is used to check CRC_16 of serial data,
* the generator polynomial is X"16+x"12+x"\5+1.

* Called by :

* Revision History : 2000-5-5 Revision 1.0

* Email : zhangnb@sz.huawei.com.cn

2001/02/28 WRABUIT A, 12ALA5T %39 71, 5671

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

* Company : Huawei Technology Inc.

* Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

B L e e L e s L e L o e o S e 2 e o 2 o e o o /

I
/l TOP MODULE
I
module CRC16_SER(

Reset |,
Gelk
Soc ,
Data_in,

Crc_out

1
// SIGNAL DECLARATIONS
I

input Reset ;
input Gelk
input Soc

input Data_in;

output [15:0] Crc_out ;

I
I/ SIGNAL DECLARATIONS
1

wire Reset ;
wire Gelk
wire Soc
wire Data_in;

reg [15:0] Crc_out;

//Reset signal

/IClock signal

/IStart of cell
/linput data of cell

/loutput CRC signal

2001/02/28 WRABUIT A, 12ALA5T

%540 71, J:56 7T

My s

wane Verilog BEA KBRS TSR G
reg Temp

integer ij.kl;

I

/I PARAMETERS

I

parameter U DLY=1 ;

I

I/l Crc_out signal

It

always @ (posedge Reset or posedge Gelk)
begin
if (Reset)
Crc_out <= #U_DLY 1600 ;
else if (Soc == 1'b1)
Crc_out<=#U DLY 16'b0 ;
else
begin

Temp = Data_in ”~ Crc_out[15] ;

for (j=15;j>12;j=j-1)
Crc_out[j] <=#U_DLY Crc_out[j-1] ;
Crc_out[12] <= #U_DLY Temp ” Crc_out[11] ;

for (k=11;k>5;k=k-1)
Crc_out[k] <=#U_DLY Crc_out[k-1] ;
Crc_out[5] <=#U_DLY Temp " Crc_out[4] ;

for (1=4;1>0;1=I-1)
Crc_out[l] <=#U_DLY Crc_out[l-1] ;
Crc_out[0] <=#U_DLY Temp ;

end

2001/02/28 WRABUIT A, 12ALA5T %4170, 5670

Verilog 24 LB BT 45 515 fﬁ“iﬁ)\)@éﬁ)

end

endmodule
3.2 FEHLBU= £ BB
3.2. 11k

PHBENL A SRR A P REALRY , 2 — N LA IR 41 . e AR A B 41 18— L G vt Re v R e
S nsE 5 AT () R R AR OGHRAAE Ty HLR AT SRR K G A0, T I ST A AR RN AL B, BT A
(ERISCINAE s

DhBEHLP I A AR, TR P R Dy BERLP 91 (R HL e N — BB AL Ap A e o 6 AT 0 MR L
R B A A R AR LRk SRS AL B AP 2 2R o PR SOt R A7 B A7 4557 26 L 1) i) ST B A 1) — B i B 17 4
RN e KA PEZAE S B AL 25 A7 8P4, TRR m P4, AL S A2 A ny I m Fe 4 9 A 91k 2n-1,
B4 0RE .

Forp, DRRENLECR A S BT A IR AS (AL B 253 1 SEED 75 4744 th
3.2 208 BB 91 e A 2 A A S B

PR 21 A A 4 TR AR S A B TR BE 2% vh SEED A 474 1L, 1 SEED #4248 A 4k 8 67, Pt
PAt7 B — M 8 ML OV BE R R A g, ERIAR IR 2 T A «

F(X)=x8+x4+x3+x2+1

PhBERLRE A s @ I 1 B

A T

1 BN 51 5 2 e A R HE P
Bl b CiARERAIR 2 10 F(x) 25 I R 2K

3.2.38 i PABENLT 51 K A4 11) Verilog HDL 4l

[FFFHx * * * * * * * * * * * * * *

* Filename : rangen.v

2001/02/28 WRABUIT A, 12ALA5T 5542 71, 5671

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

* Auther : Verilog group

* Description : This module is used to generate 8-bits random number,
* the polynomial is X"8+x"4+x"3+x"2+1.

* Called by :

* Revision History : 2000-5-5

* Revision 1.0
* Email : zhangnb@sz.huawei.com.cn
* Company : Huawei Technology Inc.

* Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

*kkkhhkkkhkhkkhkhhkkkhkhhkkhkhhkhkkhkhhkkkhhhkkhkhhhkhhhkhkhhkhkhhhkkrkhhkkhhhkkhkhhkkhhhkhkhhhkkhkhhkkihhkhihkiikx /

I
// TOP MODULE
I
module RANGEN (

Reset, //Reset signal

Gclk, //Clock signal

Load, //Load seedto Ran_num
Seed, /linitialize Ran_num

Ran_num //output random number

)i
I
/l SIGNAL DECLARATIONS
I
input Reset ;
input Gelk
input Load ;

input [7:0] Seed ;
output [7:0] Ran_num ;

1
/ SIGNAL DECLARATIONS

2001/02/28 WRABUIT A, 12ALA5T %43 71, 56710

My s

waane Verilog FEAHLESEERHE 3H TSR G
I

wire Reset ;

wire Gelk

wire Load ;

wire [7:0] Seed
reg [7:0] Ran_num;

integer i ;

I
/I PARAMETERS
I
parameter U_DLY=1 ;

I

// Ran_num signal

I

always @(posedge Reset or posedge Gcelk)
begin
if (Reset)
Ran_num <=8'h0 ;
else if (Load)
Ran_num <=#U_DLY Seed;

else
begin
for (i=1;i<8;i=i+1)
Ran_num[i] <=#U_DLY Ran_num[i-1] ;
Ran_num[0] <= #U_DLY Ran_num[1] * (Ran_num[2] * (Ran_num[3] * Ran_num[7])) ;
end
end
endmodule

3.3XE O RAM {4 ELRE 7Y

2001/02/28 WRABUIT A, 12ALA5T 5544 71, 5610

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

s
IO

FH—~~ 512X8 Xt 1 RAM SKSZHLAZP FIFO, 1% RAM 47 B 1 Fridk :

/***\

MODULE: Dual Port RAM
FILE NAME: dualram.v
VERSION: 2000-4-20
AUTHOR:

CODE TYPE: Behavioral and RTL

DESCRIPTION: This module defines a Synchronous Dual Port

Random Access Memory.

*** /

module DUALRAM(

Read_clock,
Write_clock,
Read_allow,
Write_allow,
Read_addr,
Write_addr,
Write_data,
Read_data
)i
parameter DLY 1; /I Clock-to-output delay. Zero
/I time delays can be confusing
/l and sometimes cause problems.
parameter RAM_WIDTH 8; / Width of RAM (number of bits)
parameter RAM_DEPTH 512; // Depth of RAM (number of bytes)
parameter ADDR_WIDTH 9; /I Number of bits required to
/I represent the RAM address
input Read clock; /l RAM read clock
input Write_clock; /Il RAM write clock
input [RAM_WIDTH-1:0] Write_data; // RAM data input
input [ADDR_WIDTH-1:0] Read_addr; /I RAM read address
2001/02/28 FRBLITAT s AZBLLTE 45 T, 3£ 56 Ui

\\\\!l,"”/é Verilog A< i Bk B it i 315 i%‘iﬁ)\)tff%iEEﬁ
input [ADDR_WIDTH-1:0] Write_addr; /I RAM write address
input Read_allow; // Read control
input Write_allow; I/l Write control

output [RAM_WIDTH-1:0] Read data; /I RAM data Output

reg [RAM_WIDTH-1:0]

reg [RAM_WIDTH-1:0]

Read_data;

Mem [RAM_DEPTH-1:0];

I/l Look at the rising edge of the clock

always @(posedge Write_clock) begin

if (Write_allow)

Mem[Write_addr] <= #DLY Write_data;

end

always @(posedge Read_clock) begin

if (Read_allow)

Read_data <= #DLY Mem[Read_addr];

end

endmodule
3.4 [FIFO Hi& it
3.4.1TRe R

NHIAF D FIFO J& Rk (8 I RAM SKSEILI ot T35 2 il — AN h, nf LB FIFO K& it
Bgsr=4: Empty FFull i o BT —IRS#AE, KETHEEE (Facntr) I l, $U4T—R'S#A4E, Facntr % 1.
MR A TS bR, I H AT EARAER, KR Empty BRAE SN RIS S Tk, O
HRAPATEEAER, 57724 Full bR

3.4.21% 1Y

/***\

Filename

Description

Author

Revision

syncfifo.v

FIFO controller top level

Implements a 512x8 FIFO with common read/write clocks.
Verilog Group

2000-04-20

2001/02/28 WRABUIT A, 12ALA5T %546 71, J:56 7T

7 4
W eritog st it a5 0 ARG

Company : Huawei Ltd.
*** /
“timescale 1ns/ 10ps

module SYNCFIFO(

Fifo_rst, /lasync reset

Clock, /lwrite and read clock

Read_enable,

Write_enable,

Write_data,

Read_data,

Full, [Ifull flag

Empty, /lempty flag

Fcounter /fcount the number of data in FIFO

)i
parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH =9;
input Fifo_rst;
input Clock;
input Read_enable;
input Write_enable;
input [DATA_WIDTH-1:0] Write_data;

output [DATA_WIDTH-1:0] Read_data;
output Full;
output Empty;
output [ADDR_WIDTH-1:0] Fcounter;

reg [DATA_WIDTH-1:0] Read_data;
reg Full;

reg Empty;

reg [ADDR_WIDTH-1:0] Fcounter;

2001/02/28 WRABUIT A, 12ALA5T 5547 71, 56171

7 4
W eritog st it a5 0 ARG

reg [ADDR_WIDTH-1:0] Read_addr; //read address
reg [ADDR_WIDTH-1:0] Write_addr; [Iwrite address

wire Read_allow = (Read_enable && 'Empty);
wire Write_allow = (Write_enable && ! Full);

[FFFHx * * * * * * * * * * * * *\

BLOCK RAM instantiation for FIFO. Module is 512x8, of which one

address location is sacrificed for the overall speed of the design

\ * * * * * * * * * * * * * 7(/

DUALRAM U_RAM(
Read_clock(Clock),
Write_clock(Clock),
Read_allow(Read_allow),
Write_allow(Write_allow),
Read_addr(Read_addr),
Write_addr(Write_addr),
Write_data(Write_data),
Read_data(Read_data)
)i
[e ek ok ke ek ke ek ok ek ek ek ke ek ok ke ek Aok Ak
Empty flag is set on Fifo_rst (initial), or when on the
next clock cycle, Write Enable is low, and either the
FIFOcount is equal to 0, or it is equal to 1 and Read
Enable is high (about to go Empty).
Ve ok ke ok ke ek ok ok ek ok sk ek ek ko ek ok ok o |
always @(posedge Clock or posedge Fifo_rst)
if (Fifo_rst)
Empty <="'b1;
else
Empty <= (! Write_enable && (Fcounter[8:1] == 8'h0) &&
((Fcounter[0] == 0) || Read_enable));

/**-k*****-k****-k****-k****-k****-k****-k****-k****-k****-k**********\

Full flag is set on Fifo_rst (but it is cleared on the

2001/02/28 WRABUIT A, 12ALA5T %548 71, J:56 171

7 4
W eritog st it a5 0 ARG

first valid clock edge after Fifo_rst is removed), or
when on the next clock cycle, Read Enable is low, and
either the FIFOcount is equal to 1FF (hex), or it is
equal to 1FE and the Write Enable is high (about to go Full).
ke ok ek ke ok ke ek ok ok ek ek ok sk ek ek ko ok ok ok o |
always @(posedge clock or posedge Fifo_rst)
if (Fifo_rst)
Full <="b1,
else
Full <= (! Read_enable && (Fcounter[8:1] == 8'hFF) &&
((Fcounter[0] == 1) || Write_enable));

/**-k*****-k****-k****-k****-k****-k****-k****-k****-k****-k****-k******\

Generation of Read and Write address pointers.

\ * * * * * * * * * * * * /

always @(posedge clock or posedge Fifo_rst)
if (Fifo_rst)
Read_addr <="h0;
else if (Read_allow)
Read_addr <= Read_addr + 'b1;
always @(posedge clock or posedge Fifo_rst)
if (Fifo_rst)
Write_addr <= "h0;
else if (Write_allow)
Write_addr <= Write_addr + 'b1;
[A A A A e A Ak
Generation of FIFOcount outputs. Used to determine how
Full FIFO is, based on a counter that keeps track of how
many words are in the FIFO. Also used to generate Full
and Empty flags. Only the upper four bits of the counter
are sent outside the module
\idsisisiiisisiisisaisikisaisiaiidsisiiissisiiisssiissisiaiisssiaiissisiaiisssiaiisiais]
always @ (posedge clock or posedge Fifo_rst)
if (Fifo_rst)

2001/02/28 WRABUIT A, 12ALA5T %549 71, 5671

7 i
W Verilog HA LB B4l 5 15 A S B

Fcounter <= "h0;

else if ((! Read_allow && Write_allow) || (Read_allow && ! Write_allow))

begin
if (Write_allow) Fcounter <= Fcounter + 'b1;
else Fcounter <= Fcounter - 'b1;
end
endmodule
3.5 %% FIFO #it
3.5. 10k

S0 FIFO A 8 ML MBS gl , Empty HEZRT =42, Full IS EFeh=4:, B R,
P AASRER A2 FIFO A) vt s K = 28 Empty A1 Full {55 i ddx —)@, SR 7R = 1E i il 4% 460
&Y (Gray-code) Hiuhik) 5%
3.5.2¢ U
shhisseisihissdsssisiissdsdsisisiiissdstisiisssssisiiiissdssisisiiiasdsiaial
Filename : asyncfifo.v

Description : Async FIFO controller top level

Implements a 512x8 FIFO with common read/write clocks.

Author : Verilog Group
Revision : 2000-04-20
Company : Huawei Ltd.

*** /

“timescale 1ns/ 10ps
module ASYNCFIFO(
Fifo_rst, /lasync reset
Read_clock,
Write_clock,
Read_enable,
Write_enable,
Write_data,
Read_data,
Full, /[Full flag
Empty /[Empty flag

2001/02/28 WRABUIT A, 12ALA5T %550 71, F:56 70

W,

4L VerilOg %4& FEAE%‘L&“VI—}‘E‘%‘— 5

[k

it
IS

)i
parameter DATA_WIDTH =8;
parameter ADDR_WIDTH =9;
input Fifo_rst;
input Read_clock;
input Write_clock;
input Read_enable;
input Write_enable;
input [DATA_WIDTH-1:0] Write_data;

output [DATA_WIDTH-1:0] Read_data;

output
output
reg

reg

reg [ADDR_WIDTH-1:0]
reg [ADDR_WIDTH-1:0]
reg [ADDR_WIDTH-1:0]
reg [ADDR_WIDTH-1:0]
reg [ADDR_WIDTH-1:0]

wire

wire

Full;
Empty;
Full;
Empty;

Write_addrgray;
Write_nextgray;
Read_addrgray;
Read_nextgray;
Read_lastgray;

Read allow;

Write_allow;

/**\

BLOCK RAM instantiation for FIFO. Module is 512x8, of which one

address location is sacrificed for the overall speed of the design.

\ * * * *

DUALRAM U_RAM(

* * * * * * * * * /

Read_clock(Read_clock),

Write_clock(Write_clock),

Read_allow(Read_allow),

Write_allow(Write_allow),

2001/02/28 WRABUIT A, 12ALA5T %51 71, 5670

7 4is
W Verilog 5t i 4 5 15 ARG

Read_addr(Read_addr),
Write_addr(Write_addr),
Write_data(Write_data),
Read_data(Read_data)

);

Empty flag is set on Fifo_rst (initial), or when gray

code counters are equal, or when there is one word in

the FIFO, and a Read operation is about to be performed
|k sk ok ok ek ek ok ok ok ek ok ok ok ok ok ok ek ok ok |
always @(posedge Read_clock or posedge Fifo_rst)
if (Fifo_rst)
Empty <= 1'b1;
else

Empty <= (Emptyg || (Almostemptyg && Read_enable && ! Empty));

[FFFHx * * * * * * * * * * *\

Full flag is set on Fifo_rst (initial, but it is cleared

on the first valid Write_clock edge after Fifo_rst is

de-asserted), or when Gray-code counters are one away

from being equal (the Write Gray-code address is equal

to the Last Read Gray-code address), or when the Next

Write Gray-code address is equal to the Last Read Gray-code

address, and a Write operation is about to be performed.
Uisssisisiisisisiissisisiisssisisssisiisssisisssisiisssisissisiisssisiisssisiid
always @(posedge Write_clock or posedge Fifo_rst)

if (Fifo_rst)

Full<= 1'b1;
else

Full <= (Fullg || (Almostfully && Write_enable && ! Full));

[FFHHx * * * * * * * * * * %\

Generation of Read address pointers. The primary one is
binary (read_addr), and the Gray-code derivatives are

generated via pipelining the binary-to-Gray-code result.

2001/02/28 WRABUIT A, 12ALA5T %52 71, 35671

43906175
Line

43906175
Line

43906175
Line

7 4
W eritog st it a5 0 ARG

The initial values are important, so they're in sequence.
Grey-code addresses are used so that the registered
Full and Empty flags are always clean, and never in an
unknown state due to the asynchronous relationship of the
Read and Write clocks. In the worst case scenario, Full
and Empty would simply stay active one cycle longer, but
it would not generate an error or give false values.
\idsisishisisaisisisaisiiidsisiiidsisiissisiissisiissisaiidsisiiidsisiaiissisiisidas]
always @(posedge Read_clock or posedge Fifo_rst)
if (Fifo_rst)
read_addr <= 'b0;
else if (read_allow)
read_addr <=read_addr + 1;
always @(posedge Read_clock or posedge Fifo_rst)
if (Fifo_rst)
Read_nextgray <= 9'0100000000;
else if (read_allow)
Read_nextgray <= { read_addr[8], (read_addr[8] ” read_addr[7]),
(read_addr[7] ~ read_addr[6]), (read_addr[6] " read_addr[5]),
(read_addr[5] ~ read_addr[4]), (read_addr[4] " read_addr[3]),
(read_addr[3] ~ read_addr[2]), (read_addr[2] ~ read_addr[1]),
(read_addr[1] ~ read_addr[0]) };
always @(posedge Read_clock or posedge Fifo_rst)
if (Fifo_rst)
Read_addrgray <= 9'b100000001;
else if (read_allow)
Read_addrgray <= Read_nextgray;
always @(posedge Read_clock or posedge Fifo_rst)
if (Fifo_rst)
Read_lastgray <= 9'b100000011;
else if (read_allow)

Read_lastgray <= Read_addrgray;

/**\

2001/02/28 WRABUIT A, 12ALA5T %53 71, 5670

7 4
W eritog st it a5 0 ARG

Generation of Write address pointers. Identical copy of *
read pointer generation above, except for names. *
\idsisisisisaisisisaisiisaisisidsisiidsishiisssiissisaiidsisiiidsisiaiissisiisisais]
always @(posedge Write_clock or posedge Fifo_rst)
if (Fifo_rst)
write_addr <='h0;
else if (write_allow)
write_addr <= write_addr + 1;
always @(posedge Write_clock or posedge Fifo_rst)
if (Fifo_rst)
Write_nextgray <= 9'h100000000;
else if (write_allow)
Write_nextgray <= { write_addr[8], (write_addr[8] " write_addr[7]),
(write_addr[7] ~ write_addr[6]), (write_addr[6] ~ write_addr[5]),
(write_addr[5] ~ write_addr[4]), (write_addr[4] ~ write_addr[3]),
(write_addr[3] ~ write_addr[2]), (write_addr[2] ~ write_addr[1]),
(write_addr[1] ~ write_addr[0]) };
always @(posedge Write_clock or posedge Fifo_rst)
if (Fifo_rst)
Write_addrgray <= 9'h100000001;
else if (write_allow)
Write_addrgray <= Write_nextgray;
[e ek ek ek ek ek ek ok ek e ek ke ek ek e ek e ok ok k|
Allow flags determine whether FIFO control logic can *
operate. If Read_enable is driven high, and the FIFO is *
not Empty, then Reads are allowed. Similarly, if the *
Write_enable signal is high, and the FIFO is not Full, *
then Writes are allowed. *
\isssisiisisiiissisiiisssiiisssiissskissskissisiaiisssiisssiskisssiias]
assign read_allow = (Read_enable && ! Empty);
assign write_allow = (Write_enable && ! Full);

/**-k*****-k****-k****-k****-k****-k****-k****-k****-k****-k***********\

When the Write/Read Gray-code addresses are equal, the

2001/02/28 WRABUIT A, 12ALA5T %554 71, 35671

7 4
W eritog st it a5 0 ARG

FIFO is Empty, and Emptyg (combinatorial) is asserted.
When the Write Gray-code address is equal to the Next
Read Gray-code address (1 word in the FIFO), then the
FIFO potentially could be going Empty (if Read_enable is
asserted, which is used in the logic that generates the

registered version of Empty).

Similarly, when the Write Gray-code address is equal to
the Last Read Gray-code address, the FIFO is Full. To
have utilized the Full address space (512 addresses)
would have required extra logic to determine Full/Empty
on equal addresses, and this would have slowed down the
overall performance. Lastly, when the Next Write Gray-
code address is equal to the Last Read Gray-code address
the FIFO is Almost Full, with only one word left, and

it is conditional on Write_enable being asserted.
\idsisishisisaisisisaisiiisaisisidsisiidsisiisasiissisiissisiiidsisiaiissisiisisas]
always @Write_addrgray or Read_addrgray)

if(Write_addrgray == Read_addrgray)

Emptyg = 'bl;
else
Emptyg = 'b0;
always @Write_addrgray or Read_nextgray)
if(Write_addrgray == Read_nextgray)
Almostemptyg = 'b1;
else
Almostemptyg = 'b0;
always @Write_addrgray or Read_lastgray)
if(Write_addrgray == Read_lastgray)
Fullg = 'bl;
else
Fullg = 'b0;
always @Write_nextgray or Read_lastgray)

2001/02/28 WRABUIT A, 12ALA5T %555 71, F:56 71

7 4
W eritog st it a5 0 ARG

if(Write_nextgray == Read_lastgray)
Almostfullg = 'b1;

else
Almostfullg = 'b0;

endmodule

2001/02/28 WRABUIT A, 12ALA5T %556 71, F56 70

