
Verilog 基本电路设计指导书
绝密

请输入文档编号

深圳市华为技术有限公司

研究管理部文档中心

文档编号 版本 密级

1.0 内部公开

资源类别： HDL 语言 共 56 页

Verilog 基本电路设计指导书

(仅供内部使用)

拟制： Verilog Group 日期： 2000/04/04

批准： 日期： yyyy/mm/dd

批准： 日期： yyyy/mm/dd

深圳市华为技术有限公司

版权所有  不得复制

2001/02/28 版权所有，侵权必究 第 1 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

修订记录

日期 修订版本 描述 作者

2000/04/04 1.00 初稿完成 Verilog Group
2001/02/28 1.01 修订，主要增加三态和一些电路图 苏文彪

2001/02/28 版权所有，侵权必究 第 2 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

目  录

1 前言 5
2 典型电路的设计 5

2.1 全加器的设计 6
2.2 数据通路 6

2.2.1 四选一的多路选择器 6
2.2.2 译码器 7
2.2.3 优先编码器 8

2.3 计数器 9
2.4 算术操作 10
2.5 逻辑操作 10
2.6 移位操作 11
2.7 时序器件 12

2.7.1 上升沿触发的触发器 12
2.7.2  带异步复位、上升沿触发的触发器 12
2.7.3 带异步置位、上升沿触发的触发器 13
2.7.4 带异步复位和置位、上升沿触发的触

发器 14
2.7.5 带同步复位、上升沿触发的触发器 15
2.7.6 带同步置位、上升沿触发的触发器 16
2.7.7 带异步复位和时钟使能、上升沿触发

的触发器 16
2.7.8 D-Latch （锁存器） 17

2.8 ALU 18
2.9 有限状态机（FSM）的设计 20

2.9.1 概述 20
2.9.2One-hot 编码 23
2.9.3 Binary 编码 26

2.10 三态总线 30
2.10.1 三态 buffer 30
2.10.2 双向 I/O buffer 31

3 常用电路设计 31
3.1CRC 校验码产生器的设计 31

3.1.1 概述 31
3.1.2 CRC 校验码产生器的分析与硬件实

现 32
3.1.3 并行 CRC-16 校验码产生器的 Verilog
HDL编码 33
3.1.4 串行 CRC-16 校验码产生器的 Verilog
HDL编码 35

3.2 随机数产生电路设计 37
3.2.1 概述 37

2001/02/28 版权所有，侵权必究 第 3 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

3.2.2 伪随机序列发生器的硬件实现 37
3.2.3 8 位伪随机序列发生器的 Verilog
HDL编码 38

3.3 双端口RAM 仿真模型 40
3.4 同步 FIFO 的设计 41

3.4.1 功能描述 41
3.4.2 设计代码 41

3.5 异步 FIFO 设计 44
3.5.1 概述 44
3.5.2 设计代码 44

2001/02/28 版权所有，侵权必究 第 4 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Verilog 基本电路设计指导书

关键词：电路、

摘    要：本文列举了大量的基本电路的 Verilog HDL 代码，使初学者能够迅速熟悉基本的 HDL 建模；同

时也列举了一些常用电路的代码，作为设计者的指导。

缩略语清单： 对本文所用缩略语进行说明，要求提供每个缩略语的英文全名和中文解释。 

参考资料清单： 请在表格中罗列本文档所引用的有关参考文献名称、作者、标题、编号、发布日期和出版

单位等基本信息。

参考资料清单

名称 作者 编号 发布日期 查阅地点或渠

道

出版单位（若
不为本公司发
布的文献，请
填写此列）

Actel  HDL

coding  Style

Guide

November 1997 文档室 Actel 公司

1 前言

当前业界的硬件描述语言中主要有VHDL 和 Verilog HDL。公司根据本身 ASIC 设计现有的特点、现状，

主推 Verilog HDL 语言，逐渐淡化VHDL语言，从而统一公司的ASIC/FPGA 设计平台，简化流程。

为使新员工在上岗培训中能迅速掌握 ASIC/FPGA 设计的基本技能，中研基础部 ASIC 设计中心开发了

一系列的培训教材。该套HDL语言培训系列包括如下教程：

《Verilog HDL 入门教程》

《Verilog HDL 代码书写规范》

《Verilog 基本电路设计指导书》

《TestBench 编码技术》

系列教材完成得较匆忙，本身尚有许多不完善的地方，同时，可能还需要其他知识方面的培训但没有

形成培训教材，希望大家在培训过程中，多提宝贵意见，以便我们对它进行修改和完善

2 典型电路的设计

2001/02/28 版权所有，侵权必究 第 5 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

在本章节中，主要讲述触发器、锁存器、多路选择器、解码器、编码器、饱和/非饱和计数器、FSM 等

常用基本电路的设计。如果你是初学者，我们建议你从典型电路学起，如果你已经非常熟悉电路设计，我

们建议你从第 3 章看起。

2.1全加器的设计

/*********************************************************************\

Filename : fulladd.v

Author : Verilog_gruop

Description : Example of a one-bit full add.

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module FULLADDR(Cout, Sum, Ain, Bin, Cin);

input Ain, Bin, Cin;

output Sum, Cout;

wire Sum;

wire Cout;

assign Sum = Ain ^ Bin ^ Cin;

assign Cout = (Ain & Bin) | (Bin & Cin) | (Ain & Cin);

          endmodule

2.2数据通路

2.2.1四选一的多路选择器

用 case 语句实现的多路选择器，一般要求选择信号之间是相关的；case 的多路选择器

一般是并行的操作，但有些工具也可能综合成优先级的译码器除非加一些控制参数。

/*********************************************************************\

Filename : mux.v

Author : Verilog_gruop

Description : Example of a mux4-1.

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module  MUX( C,D,E,F,S,Mux_out);

2001/02/28 版权所有，侵权必究 第 6 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

input C,D,E,F ; //input 

input [1:0] S ; //select control

output Mux_out ; //result

reg Mux_out ;

//mux

always@(C or D or E or F or S)

begin

        case (S)

2'b00 : Mux_out = C ;

2'b01 : Mux_out = D ;

2'b10 : Mux_out = E ;

default : Mux_out = F ;

     endcase

end

endmodule

以上代码实现的功能如下所示：

1 Multiplexor  using  a case statement 

2.2.2译码器

因为译码信号之间是相关的，因此，译码器要 case 语句实现。

/*********************************************************************\

Filename : decode.v

Author : Verilog_gruop

Description : Example of a 3-8 decoder.

2001/02/28 版权所有，侵权必究 第 7 页，共 56 页

MUX Mux_out

S[1:0]

C
D
E
F



Verilog 基本电路设计指导书
绝密

请输入文档编号

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module DECODE(Ain,En,Yout);

input  En ; //enable

input [2:0] Ain ; //input code

output [7:0] Yout ;

reg [7:0] Yout ;

always@(En or Ain)

begin

if(!En)

Yout = 8'b0 ;

else

case (Ain)

3'b000 : Yout = 8'b0000_0001 ;

3'b001 : Yout = 8'b0000_0010 ;

3'b010 : Yout = 8'b0000_0100 ;

3'b011 : Yout = 8'b0000_1000 ;

3'b100 : Yout = 8'b0001_0000 ;

3'b101 : Yout = 8'b0010_0000 ;

3'b110 : Yout = 8'b0100_0000 ;

3'b111 : Yout = 8'b1000_0000 ;

default : Yout = 8'b0000_0000 ;

endcase

end

endmodule

2.2.3优先编码器

/********************************************************************\

Filename : Prio-encoder.v

Author : Verilog_gruop

Description : Example of a Priority Encoder.

Revision : 2000/02/29

2001/02/28 版权所有，侵权必究 第 8 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Company : Verilog_group

\*********************************************************************/

module  PRIO_ENCODER (Cin,Din,Ein,Fin,Sin,Pout);

input Cin,Din,Ein,Fin; // input signals

input [1:0] Sin; //input select control

output Pout; //output select  result 

reg Pout;

// Pout assignment

always  @(Sin  or  Cin  or Din or Ein or Fin)

begin

if (Sin == 2’b00)

Pout = Cin;

else  if (Sin == 2’b01)

Pout =  Din;

else if (Sin == 2’b10)

Pout =  Ein;

else

Pout = Fin;

end 

endmodule 

以上代码实现的功能如下图：

1 使用if 的优先译码器

2.3计数器

/********************************************************************\

Filename : count_en.v

Author : Verilog_gruop

2001/02/28 版权所有，侵权必究 第 9 页，共 56 页

Cin
Din

Fin

Ein

Sin=10
Sin=01 Sin=00

Pout



Verilog 基本电路设计指导书
绝密

请输入文档编号

Description : Example of a counter with enable.

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module COUNT_EN (En,Clock,Reset,Out);

parameter Width =8 ;

parameter U_DLY =1;

input Clock , Reset , En ;

output [Width-1:0] Out ;

reg [Width-1:0] Out ;

always@(posedge Clock or negedge Reset)

if (!Reset)

Out <= 8'b0 ;

else if (En)

Out <= #U_DLY Out + 1 ;

endmodule

2.4算术操作

/********************************************************************\

Filename : arithmetic.v

Author : Verilog_gruop

Description : Example of a arithmetic include +, -, *, /.

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module ARITHMETIC (A , B, Q1, Q2 ,Q3, Q4 );

input [3:0] A, B ; //input operator

output [4:0] Q1 ; //output sum, with carry bit

output [3:0] Q2; //output sutract result

output [3:0] Q3 ; //output quotion

output [7:0] Q4 ; //product

2001/02/28 版权所有，侵权必究 第 10 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

reg [4:0] Q1 ;

reg [3:0] Q2 , Q3 ;

reg [7:0] Q4 ;

//arithmetic operate

always@(A or B)

begin

Q1 = A+B ;

Q2 = A-B ;

Q3 = A/2 ;

Q4 = A*B ;

end

endmodule

2.5逻辑操作

/********************************************************************\

Filename : relational.v

Author : Verilog_gruop

Description : Example of a relational operate

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module  RELATIONAL(A, B,Q1,Q2,Q3,Q4) ;

input [3:0] A , B ; //operator

output Q1 , Q2 , Q3 , Q4 ; //result

reg  Q1 , Q2 , Q3 , Q4 ;

//compare

always@(A or B)

begin

Q1 = A > B ;

Q2 = A < B ;

Q3 = A>= B ;

2001/02/28 版权所有，侵权必究 第 11 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

if (A <= B)

Q4 = 1 ;

else

Q4 = 0 ;

end

endmodule

2.6移位操作

/********************************************************************\

Filename : shifter.v

Author : Verilog_gruop

Description : Example of a shifter

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module SHIFT (Data ,Q1, Q2) ;

input [3:0] Data ;

output [3:0] Q1,Q2 ;

parameter B = 2 ;

reg [3:0] Q1, Q2 ;

always@(Data)

begin

Q1 = Data << B ;

Q2 = Data >> B ;

end

endmodule

2.7时序器件

一个时序器件（指触发器或锁存器）就是一个一位存储器。锁存器是电平敏感存储器件，触发器是沿

触发存储器件。

触发器也被称为寄存器，在程序中体现为对上升沿或下降沿的探测，VERILOG 中采用如下方法表示：

2001/02/28 版权所有，侵权必究 第 12 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

（posedge  Clk)                               --------  上升沿

  (negedge    Clk)                              --------下降沿

下面给出各种不同类型触发器的描述。

2.7.1上升沿触发的触发器

实现了一个D 触发器。

/*********************************************************************\

Filename : dff.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module DFF (Data, Clk, Q);

input  Data, Clk;

output Q;

reg  Q;

always  @ (posedge Clk)

     Q <= Data;

endmodule

功能如下图：

1 D 触发器

2.7.2  带异步复位、上升沿触发的触发器

/*********************************************************************\

Filename : dff_async_rst.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with  Asynchronous  Reset.

2001/02/28 版权所有，侵权必究 第 13 页，共 56 页

D Q

CK

Data

Clk

Q



Verilog 基本电路设计指导书
绝密

请输入文档编号

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module DFF_ASYNC_RST (Data, Clk, Reset, Q);

input  Data, Clk, Reset;

output Q;

parameter U_DLY =1;

reg Q;

always @ (posedge Clk  or  negedge Reset)

if ( ~Reset)

Q <=  #U_DLY 1'b0 ;

else

Q <= #U_DLY Data ;

endmudule

功能如下图：

1 带异步复位D 触发器

2.7.3带异步置位、上升沿触发的触发器

/*********************************************************************\

Filename : dff_async_pre.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with  Asynchronous  Preset.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module DFF_ASYNC_PRE (Data, Clk, Preset, Q);

input  Data, Clk, Preset;

2001/02/28 版权所有，侵权必究 第 14 页，共 56 页

D Q

CK
R

Data

Clk

Reset

Q



Verilog 基本电路设计指导书
绝密

请输入文档编号

output Q;

parameter U_DLY =1;

reg Q;

always @ (posedge Clk  or  negedge Preset)

if ( ~Preset)

Q <=  #U_DLY 1'b1 ;

else

Q <= #U_DLY  Data ;

endmudule

功能如下图：

1 带异步置位D 触发器

2.7.4带异步复位和置位、上升沿触发的触发器

/*********************************************************************\

Filename : dff_async.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop 

                                                       with  Asynchronous  Reset and  Preset.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module  DFF_ASYNC (Data, Clk, Reset, Preset, Q);

input  Data, Clk, Reset, Preset ;

output Q;

parameter U_DLY = 1;

reg Q;

always @ (posedge Clk  or  negedge Reset  or  negedge  Preset)

2001/02/28 版权所有，侵权必究 第 15 页，共 56 页

Data

Clk

Q

Preset

D Q

CK

P



Verilog 基本电路设计指导书
绝密

请输入文档编号

if ( ~Reset)

Q <= 1'b0 ;

else if  ( ~ preset )

Q <= 1'b1;

else

Q <= #U_DLY  Data ;

endmudule

  功能如下图：

1 带异步置位、复位D 触发器

2.7.5带同步复位、上升沿触发的触发器

/*********************************************************************\

Filename : dff_sync_rst.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with  Synchronous  Reset.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module  DFF_SYNC_RST (Data, Clk, Reset, Q);

input  Data, Clk, Reset;

output Q;

parameter U_DLY = 1;

reg Q;

always @ (posedge Clk )

if ( ~Reset)

Q <=  #U_DLY 1'b0 ;

else

Q <= #U_DLY  Data ;

endmudule

2001/02/28 版权所有，侵权必究 第 16 页，共 56 页

Data

Clk

Q

Preset

Reset

D Q

CK

P

R



Verilog 基本电路设计指导书
绝密

请输入文档编号

功能如下图：

1 带同步复位D 触发器

2.7.6带同步置位、上升沿触发的触发器

/*********************************************************************\

Filename : dff_sync_pre.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with  Synchronous  Preset.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module  DFF_SYNC_PRE (Data, Clk, Preset, Q);

input  Data, Clk, Preset;

output Q;

parameter U_DLY = 1;

reg Q;

always @ (posedge Clk )

if ( ~Preset)

Q <= #U_DLY 1'b1 ;

else

Q <= #U_DLY Data ;

endmudule

功能如下图：

2001/02/28 版权所有，侵权必究 第 17 页，共 56 页

D Q

CKClk

Q

Reset

0

Data



Verilog 基本电路设计指导书
绝密

请输入文档编号

1 带同步置位的D 触发器

2.7.7带异步复位和时钟使能、上升沿触发的触发器

/*********************************************************************\

Filename : dff_ck_en.v

Author : Verilog_gruop

Description : Example of a Rising Edge Flip-Flop with  Asynchronous  Reset

                                                      and  Clock Enable.

Revision : 2000/03/30

Company : Verilog_group

\*********************************************************************/

module DFF_CK_EN (Data, Clk, Reset, En, Q);

input  Data, Clk, Reset, En;

output Q;

parameter U_DLY = 1;

reg Q;

always @ (posedge Clk  or  negedge Reset)

if ( ~Reset)

Q <= 1'b0 ;

else  if  (En)

Q <= #U_DLY  Data ;

endmudule

功能如下图：

2001/02/28 版权所有，侵权必究 第 18 页，共 56 页

D Q

CKClk

Q

Preset

1

Data



Verilog 基本电路设计指导书
绝密

请输入文档编号

1 带异步复位、使能端的D 触发器

2.7.8D-Latch （锁存器）

锁存器是电平敏感器件，在ASIC设计中，锁存器会带来诸多问题，如额外时延、DFT 问题，因此，在

实际设计中必须尽量避免锁存器的出现。

module  d_latch (enable,data,y);

input enable ;

input  data;

output y;

reg  y;

always @(enable or data)

if (enable )

y <= data;

endmodule

功能如下图：

1 D-Latch

2.8ALU

/********************************************************************\

Filename : alu.v

Author : Verilog_gruop

Description : Example of a  4-bit Carry Look Ahead ALU

2001/02/28 版权所有，侵权必究 第 19 页，共 56 页

Clk

QData D Q

CK

E

R
Reset

En

D Q

T

data

enable

y



Verilog 基本电路设计指导书
绝密

请输入文档编号

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module ALU(A, B, Cin, Sum, Cout, Operate, Mode);

//input signals

input [3:0] A, B; // two operands of ALU

input Cin; //carry in at the LSB

input [3:0] Operate; //determine f(.) of sum = f(a, b)

input Mode; //arithmetic(mode = 1'b1) or logic operation(mode = 1'b0)

output [3:0] Sum; //result of ALU

output Cout; //carry produced by ALU operation

// carry generation bits and propogation bits.

wire [3:0] G, P;

// carry bits;

reg [2:0] C;

// function for carry generation:

function gen

   input A, B;

   input [1:0] Oper;

   begin

      case(Oper)

         2'b00: gen = A;

         2'b01: gen = A & B;

         2'b10: gen = A & (~B);

         2'b11: gen = 1'b0;

      endcase;

   end

endfunction

2001/02/28 版权所有，侵权必究 第 20 页，共 56 页

Administrator
高亮
操作数



Verilog 基本电路设计指导书
绝密

请输入文档编号

// function for carry propergation:

function prop

   input A, B;

   input [1:0] Oper;

  

   begin

      case(Oper)

         2'b00: prop = 1;

         2'b01: prop = A | (~B);

         2'b10: prop = A | B;

         2'b11: prop = A;

      endcase;

   end 

endfunction

// producing carry generation bits; 

assign G[0] = gen(A[0], B[0], Oper[1:0]);

assign G[1] = gen(A[1], B[1], Oper[1:0]);

assign G[2] = gen(A[2], B[2], Oper[1:0]);

assign G[3] = gen(A[3], B[3], Oper[1:0]);

// producing carry propogation bits;

assign P[0] = por(A[0], B[0], Oper[3:2]);

assign P[1] = por(A[1], B[1], Oper[3:2]);

assign P[2] = por(A[2], B[2], Oper[3:2]);

assign P[3] = por(A[3], B[3], Oper[3:2]);

// producing carry bits with carry-look-ahead;

always @(G or P or Cin, Mode)

begin

   if (Mode) begin

      C[0] = G[0] | P[0] & Cin;

      C[1] = G[1] | P[1] & G[0] | P[1] & P[0] & Cin;

2001/02/28 版权所有，侵权必究 第 21 页，共 56 页

Administrator
高亮
超前进位法



Verilog 基本电路设计指导书
绝密

请输入文档编号

      C[2] = G[2] | P[2] & G[1] | P[2] & P[1] & G[0] | P[2] & P[1] & P[0] & Cin;

      Cout = G[3] | P[3] & G[2] | P[3] & P[2] & G[1] | P[3] & P[2] & P[1] & G[0] | P[3] & 

      P[2] & P[1] & P[0] & Cin;

   end

   else begin

      C[0] = 1'b0;

      C[1] = 1'b0;

      C[2] = 1'b0;

      Cout = 1'b0;

   end

end 

// calculate the operation results;

assign Sum[0] = (~G[0] & P[0]) ^ Cin;

assign Sum[1] = (~G[1] & P[1]) ^ C[0];

assign Sum[2] = (~G[2] & P[2]) ^ C[1];

assign Sum[3] = (~G[3] & P[3]) ^ C[2];

endmodule

2.9有限状态机（FSM）的设计

2.9.1概述

有限状态机（FSM）是一种常见的电路，由时序电路和组合电路组成。设计有限状态机的第一步是确

定采用 Moore 状态机还是采用 Mealy 状态机。（Mealy 型：状态的转变不仅和当前状态有关，而且跟各输入

信号有关；Moore 型：状态的转变只和当前状态有关）。从实现电路功能来讲，任何一种都可以实现同样的

功能。但他们的输出时序不同，所以，在选择使用那种状态机时要根据具体情况而定，在此，把他们的主

要区别介绍一下：

1. Moore 状态机：在时钟脉冲的有限个门延时之后，输出达到稳定。输出会在一个完整的时钟周期内

保持稳定值，即使在该时钟内输入信号变化了，输出信号也不会变化。输入对输出的影响要到下一个时钟

周期才能反映出来。把输入和输出分开，是Moore 状态机的重要特征。

2. Mealy状态机：由于输出直接受输入影响，而输入可以在时钟周期的任一时刻变化，这就使得输出状

态比 Moore 状态机的输出状态提前一个周期到达。输入信号的噪声可能会出现在输出信号上。

3. 对同一电路，使用 Moore 状态机设计可能会比使用Mealy状态机多出一些状态。

2001/02/28 版权所有，侵权必究 第 22 页，共 56 页

Administrator
高亮

Administrator
高亮

Administrator
高亮



Verilog 基本电路设计指导书
绝密

请输入文档编号

根据他们的特征和要设计的电路的具体情况，就可以确定使用那种状态机来实现功能。一旦确定状态

机，接下来就要构造状态转换图。现在还没有一个成熟的系统化状态图构造算法，所以，对于实现同一功

能，可以构造出不同的状态转换图。但一定要遵循结构化设计。在构造电路的状态转换图时，使用互补原

则可以帮助我们检查设计过程中是否出现了错误。互补原则是指离开状态图节点的所有支路的条件必须是

互补的。同一节点的任何 2 个或多个支路的条件不能同时为真。同时为真是我们设计不允许的。

在检查无冗余状态和错误条件后，就可以开始用 verilog HDL来设计电路了。

1 状态机电路逻辑图

在设计的过程中要注意以下方面：

1. full_case spec 

定义完全状态，即使有的状态可能在电路中不会出现。目的是避免综合出不希望的Latch，因为Latch

可能会带来：a. 额外的延时；b. 异步Timing问题

always @(Curr_st)                              

begin

      case(Curr_st)

                  ST0 : Next_st = ST1;

                  ST1 : Next_st = ST2;

                  ST2 : Next_st = ST0;

             endcase

        end

2001/02/28 版权所有，侵权必究 第 23 页，共 56 页

Reset
Clock

Next_st
Logic

Curr_st
Logic

Combi & sync
      Logic

Combi
Logic

Next_st

Curr_st

Administrator
高亮



Verilog 基本电路设计指导书
绝密

请输入文档编号

1 没有采用full-case

always @(Curr_st)                              

begin

      case(Curr_st)                   //synthesis full_case

                  ST0 : Next_st = ST1;

                  ST1 : Next_st = ST2;

                  ST2 : Next_st = ST0;

             default : Next_st = ST0;

             endcase

        end

1 采用full-case

2. parallel_case spec

确保不同时出现多种状态

case({En3, En2, En1})

      3'b??1 : Out = In1;

2001/02/28 版权所有，侵权必究 第 24 页，共 56 页

D

D

Q

Q

Curr_st

Next_st

Curr_st D

Next_st

D



Verilog 基本电路设计指导书
绝密

请输入文档编号

      3'b?1? : Out = In2;

      3'b1?? : Out = In3;

endcase

1 没采用parallel-case

case({En3, En2, En1})                //synthesis parallel_case

      3'b??1 : Out = In1;

      3'b?1? : Out = In2;

      3'b1?? : Out = In3;

endcase

1 采用parallel-case

3. 禁止使用casex

casex在综合时，认为Z，X为 Dont cares，会导致前仿真和后仿真不一致。如果电路中出现X，一定

要分析是否会传递。

4. 推荐在模块划分时，把状态机设计分离出来，便于使用综合根据对状态机优化。

5. 在条件表达式或附值语句中，要注意向量的宽度适配。否则，前仿真和后仿真不一致，RTL级的功

能验证很难找出问题所在。

2001/02/28 版权所有，侵权必究 第 25 页，共 56 页

En1
In1

En2
In2

En3
In3

Out

En1
In1

En2
In2

En3
In3

Out



Verilog 基本电路设计指导书
绝密

请输入文档编号

下图是一个状态机的状态转换图，在Verilog HDL 中我们可以用如下方法设计该状态机。

1 状态转换图

2.9.2One-hot 编码

/*********************************************************************\

Filename : one_hot_fsm.v

Author : Verilog_gruop

Description : Example of a one-hot encoded state machine.

Revision : 2000/02/29

Company : Verilog_group

\*********************************************************************/

module ONE_HOT_FSM (Clock, Reset, A, B, C, D, E, 

        Single, Multi, Contig);

input Clock; //system Clock

input Reset; //async Reset, active high

input A, B, C, D, E; //FSM input signals

output Single, Multi, Contig; //FSM output signals

//define output signals type

reg Single;

reg Multi;

reg Contig;

2001/02/28 版权所有，侵权必究 第 26 页，共 56 页

Reset

A&(!B)&C Multi = 1
Contig = 0
Singal = 0

     !D
Multi = 0
Contig = 1
Singal = 0

s1

s2

s3

s4

A&B&(!C) Multi = 1
Contig = 1
Singal = 0

D

S5

S6

S7

A&B&(!C) Multi = 1
Contig = 0
Singal = 0

A|D

Multi = 0
Contig = 1
Singal = 1

!E
Multi = 0
Contig = 1
Singal = 1

E
Multi = 0
Contig = 0
Singal = 0



Verilog 基本电路设计指导书
绝密

请输入文档编号

// Declare the symbolic names for states

parameter [6:0]  // enum STATE_TYPE one-hot

    S1 = 7'b0000001,

    S2 = 7'b0000010,

   S3 = 7'b0000100,

    S4 = 7'b0001000,

    S5 = 7'b0010000,

    S6 = 7'b0100000,

    S7 = 7'b1000000;

parameter U_DLY = 1;

// Declare current state and next state variables

reg [2:0] Curr_st;

reg [2:0] Next_st;

//Curr_st assignment, sequential logic

always @ (posedge Clock or posedge Reset) 

begin

if (Reset)

    Curr_st <= S1;

else 

       Curr_st <= #U_DLY Next_st;

 end

//combinational logic

 always @ (Curr_st or A or B or C or D or D or E)

begin 

    case (Curr_st) //full_case

    S1 :

begin

     Multi  = 1'b0;

    Contig = 1'b0;

    Single = 1'b0;

2001/02/28 版权所有，侵权必究 第 27 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

            if (A & ~B & C) 

Next_st = S2;

            else if (A & B & ~C)

Next_st = S4;

            else

Next_st = S1;   

    end 

      S2 :

begin

            Multi  = 1'b1;

            Contig = 1'b0;

            Single = 1'b0;

    if (!D) 

                   Next_st = S3;

            else

                    Next_st = S4;

end 

            S3 :

begin

                Multi  = 1'b0;

                Contig = 1'b1;

                Single = 1'b0;

    if (A | D) 

Next_st = S4;

else 

Next_st = S3;

end 

S4 :

begin

Multi  = 1'b1;

Contig = 1'b1;

Single = 1'b0;

if (A & B & ~C)

2001/02/28 版权所有，侵权必究 第 28 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

            Next_st = S5;

else 

Next_st = S4;

end

S5 :

begin

Multi  = 1'b1;

Contig = 1'b0;

Single = 1'b0;

Next_st = S6;

end

S6 :

begin

Multi  = 1'b0;

Contig = 1'b1;

Single  = 1'b1;

if (!E) 

Next_st = S7;

else 

Next_st = S6;

end 

S7 :

begin

Multi  = 1'b0;

Contig = 1'b1;

Single = 1'b0;

if (E) 

Next_st = S1;

else 

Next_st = S7;

end 

endcase

end 

2001/02/28 版权所有，侵权必究 第 29 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

endmodule

2.9.3Binary 编码

/*********************************************************************\

Filename : binary_fsm.v

Description : Example of a binary encoded state machine.

Revision : 2000/02/29

Company : Huawei Ltd.

\*********************************************************************/

`timescale 1ns / 10ps

module binary (Clock, Reset, A, B, C, D, E, 

       Single, Multi, Contig);

input Clock; //system Clock

input Reset; //async Reset, active high

input A, B, C, D, E; //FSM input signals

output Single, Multi, Contig; //FSM output signals

//define output signals type

reg Single;

reg Multi;

reg Contig;

// Declare the symbolic names for states

parameter [2:0] //enum STATE_TYPE  binary

    S1 = 3'b001,

    S2 = 3'b010,

    S3 = 3'b011,

    S4 = 3'b100,

    S5 = 3'b101,

    S6 = 3'b110,

    S7 = 3'b111;

parameter U_DLY = 1;

// Declare current state and next state variables

reg [2:0] Curr_st;

2001/02/28 版权所有，侵权必究 第 30 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

reg [2:0]  Next_st;

//Curr_st assignment, sequential logic

always @ (posedge Clock or posedge Reset) 

begin

if (Reset)

    Curr_st <= S1;

else 

       Curr_st <= #U_DLY Next_st;

 end

//combinational logic

 always @ (Curr_st or A or B or C or D or D or E)

begin 

    case (Curr_st) //full_case

            S1 :

begin

     Multi  = 1'b0;

    Contig = 1'b0;

    Single = 1'b0;

            if (A & ~B & C) 

                    Next_st = S2;

            else if (A & B & ~C)

Next_st = S4;

            else

Next_st = S1;   

    end 

S2 :

begin

            Multi  = 1'b1;

            Contig = 1'b0;

            Single = 1'b0;

    if (!D) 

2001/02/28 版权所有，侵权必究 第 31 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

                    Next_st = S3;

            else

                    Next_st = S4;

            end 

            S3 :

begin

                Multi  = 1'b0;

                Contig = 1'b1;

                Single = 1'b0;

    if (A | D) 

                Next_st = S4;

else 

Next_st = S3;

end 

S4 :

begin

Multi  = 1'b1;

Contig = 1'b1;

Single = 1'b0;

if (A & B & ~C)

                Next_st = S5;

else 

Next_st = S4;

end

S5 :

begin

Multi  = 1'b1;

Contig = 1'b0;

Single = 1'b0;

Next_st = S6;

end

    S6 :

begin

2001/02/28 版权所有，侵权必究 第 32 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Multi  = 1'b0;

Contig = 1'b1;

Single  = 1'b1;

if (!E) 

Next_st = S7;

else 

Next_st = S6;

end 

S7 :

begin

Multi  = 1'b0;

Contig = 1'b1;

Single = 1'b0;

if (E) 

Next_st = S1;

else 

Next_st = S7;

end 

endcase

 end 

endmodule

以上介绍的用Verilog HDL 设计来实现的 FSM 电路，可用下面的逻辑图来表现：

1 FSM逻辑框图

2001/02/28 版权所有，侵权必究 第 33 页，共 56 页

Reset
Clock

Next_st
Logic

Curr_st
Logic

Combi & sync
      Logic

Combi
Logic

Next_st

Curr_st



Verilog 基本电路设计指导书
绝密

请输入文档编号

2.10三态总线

2.10.1三态 buffer

三态 buffer 是带有高阻输出能力的输出 buf 。在总线结构中，为解决总线竞争问题，必须采用三态的输

出 buf 。

module TRISTATE (E, A,Y);

input E,A;

output  Y;

reg  Y;

always @(E or  A)

begin 

if ( E)

Y = A;

else

Y = 1’b Z;

end

endmodule 

或者：

module TRISTATE(E,A,Y);

 input E,A;

output  Y;

assign  Y = E? A:1’bZ;

功能图如下：

1 三态buffer

2.10.2双向 I/O buffer

双向总线可输入、输出，输出带高阻。

2001/02/28 版权所有，侵权必究 第 34 页，共 56 页

E

A Y

Administrator
高亮

Administrator
高亮



Verilog 基本电路设计指导书
绝密

请输入文档编号

module  BIDIR ( E,A,Y,B);

input E,A;

output B;

inout Y; // in and out bus

tri Y; // net type  is tri 

assign B = Y;

assign  Y =  E?  A:1’bz;

endmodule 

功能图如下：

1 双向总线buffer

3 常用电路设计

3.1CRC校验码产生器的设计 

3.1.1概述

 冗余编码是在二进制通信系统中常用的差错检测方法，它是通过在原始数据后加冗余校验码来检测差

错，冗余位越多，检测出传输错误的机率越大。循环冗余编码（Cyclic Redundancy Codes，简称 CRC）是一

种常用的冗余编码，CRC 校验的基本原理是：CRC 可由一称为生成多项式的常数去除该数据流的二进制数

值而得，商数被放弃，余数作为冗余编码追加到数据流尾，产生新的数据流进行发送。在接收端，新的数

据流被同一常数去除，检查余数是否为零。 如果余数为零，就认为传输正确，否则就认为传输中已发生差

错，该数据流重发。

3.1.2CRC 校验码产生器的分析与硬件实现

在产生 CRC 校验码时，需要用到除法运算。一般说来，非常大的数字进行除法时，用数字逻辑实现时

是比较麻烦的。因此，把二进制信息预先转换成一定的格式，这就是CRC 的多项式表示。 二进制数表示为

生成多项式的系数，如下例所示：

1,0001,0000,0010,0001 = x16 + x12 +x 5 + 1

2001/02/28 版权所有，侵权必究 第 35 页，共 56 页

E
A

B

Y

Administrator
高亮



Verilog 基本电路设计指导书
绝密

请输入文档编号

在多项式表示中，所有的二进制数均被表示成一个多项式，多项式的系数就是二进制中的对应值。D

为数据流多项式，G 为生成多项式，Q 为商数多项式，R 为余数多项式。在生成 CRC 校验码时，数据流多

项式 D 被乘以 Xn，这里 n 为生成多项式 G 的最高次数，也就是 CRC 的长度。这个操作是通过将左移 n 位得

到的，我们可以用 CRC 来代替多项式最后的 n 个 0，组成新的数据流多项式。由于二进制的加法和减法是

等价的，所以产生新的数据流多项式应能被生成多项式G 除尽。用以下公式表示为：

（XnD）＋ R ＝ （QG）＋ 0

在接收端，传输信息的前一部分为原始数据流D；后一部分（最后 n 位数）为余数R。整个数据流多项

式被同一生成多项式 G 去除，商数被丢弃，余数应为 0。如果余数不为 0，说明传输数据时发生错误，数据

需要重传。 

不同的生成多项式有不同的检错能力，为了得到优化的结果，我们必须根据需要选择合适的生成多项

式，CRC-16 的生成多项式为：

G(x) = x16 + x12 +x 5 + 1

CRC 校验码产生器分两种：串行 CRC 校验码产生器和并行 CRC 校验码产生器。本文用到的是并行

CRC 校验码产生器。由于计算并行 CRC 时用到了串行 CRC 的一些思想，所以在此先讲一下串行 CRC 的产

生。

通常，CRC 校验码的值可以通过线性移位寄存器和异或门求得，线性移位寄存器一次移一位，完成除

法功能，异或门完成不带进位的减法功能。 如果商数为’1’，则从被除数的高阶位减去除数，同时移位寄

存器右移一位 ，准备为被除数的较低位进行运算。 如果商数为’0’，则移位寄存器直接右移一位 。串行

CRC-16 校验码产生器的原理图如图 2 所示。

图 2    串行 CRC-16 校验码产生器原理图

在设计并行CRC 校验码产生器的时候，我们可以采用串行CRC 校验码的思想，用线性移位寄存器的方

法产生并行 CRC 校验码。 与串行 CRC 校验码产生器不同的是，并行 CRC 校验码产生器 16 位 CRC 同时输

出，所以要求在一个时钟周期内，移位寄存器一次需要移 16 位。实际上，移位寄存器不可能在一个时钟周

期内移 16 位，所以这部分电路是用组合逻辑来完成。整个 CRC 校验码产生器由组合逻辑和 16 个输出寄存

器组成，通过仿真和综合，满足设计要求。

2001/02/28 版权所有，侵权必究 第 36 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

3.1.3并行 CRC-16 校验码产生器的 Verilog HDL编码

/*************************************************************************

*            Filename : crc16_para.v

*              Auther : Verilog group

*         Description : This module is used to check CRC_16 of 8-bits cell

*                       data, the generator polynomial is x^16+x^12+x^5+1.

*           Called by : 

*    Revision History : 2000-5-5 Revision 1.0

*               Email : zhangnb@sz.huawei.com.cn

*             Company : Huawei Technology Inc.

*    Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

*************************************************************************/

//----------------------------

// TOP MODULE

//----------------------------

module CRC16_PARA(

                  Reset   ,    //Reset signal

                  Gclk    ,    //Clock signal

                  Soc     ,    //Start of cell

                  Data_in ,    //input data of cell

                  Crc_out      //output CRC signal

                ) ;

//----------------------------

// SIGNAL DECLARATIONS

//----------------------------

input          Reset   ;

input          Gclk    ;

input          Soc     ;

input  [7:0]   Data_in ;

output [15:0]  Crc_out ;

2001/02/28 版权所有，侵权必究 第 37 页，共 56 页

Administrator
高亮
生成多项式



Verilog 基本电路设计指导书
绝密

请输入文档编号

//----------------------------

// SIGNAL DECLARATIONS

//----------------------------

wire           Reset   ;

wire           Gclk    ;

wire           Soc     ;

wire   [7:0]   Data_in ;

reg    [15:0]  Crc_out ;

reg    [15:0]  Crc_tmp ;

reg            Temp    ;

integer        i,j,k,l ;

//----------------------------

// PARAMETERS

//----------------------------

parameter  U_DLY=1     ;

//----------------------------

// Crc_out signal

//----------------------------

always @(posedge Reset or posedge Gclk)

begin

      if (Reset)

            Crc_out <= #U_DLY 16'b0 ;

      else if (Soc == 1'b1)

            Crc_out <= #U_DLY 16'b0 ;

      else

            Crc_out <= #U_DLY Crc_tmp ;

end

           

//----------------------------

// Crc_tmp signal

2001/02/28 版权所有，侵权必究 第 38 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

//----------------------------

always @(Crc_out or Data_in)

begin

      Crc_tmp = Crc_out ;

      for (i=7;i>=0;i=i-1)

      begin

            Temp = Data_in[i] ^ Crc_tmp[15]  ;

            for (j=15;j>12;j=j-1)

                   Crc_tmp[j] = Crc_tmp[j-1] ;

            Crc_tmp[12] = Temp ^ Crc_tmp[11] ;

            for (k=11;k>5;k=k-1)

                   Crc_tmp[k] = Crc_tmp[k-1] ;

            Crc_tmp[5] = Temp ^ Crc_tmp[4]   ;

            for (l=4;l>0;l=l-1)

                   Crc_tmp[l] = Crc_tmp[l-1] ;

            Crc_tmp[0] = Temp                ;

     end

end

endmodule

3.1.4串行 CRC-16 校验码产生器的 Verilog HDL编码

/**************************************************************************

*            Filename : crc16_ser.v

*              Auther : Verilog group

*         Description : This module is used to check CRC_16 of serial data,

*                       the generator polynomial is x^16+x^12+x^5+1.

*           Called by : 

*    Revision History : 2000-5-5 Revision 1.0

*               Email : zhangnb@sz.huawei.com.cn

2001/02/28 版权所有，侵权必究 第 39 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

*             Company : Huawei Technology Inc.

*    Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

**************************************************************************/

//----------------------------

// TOP MODULE

//----------------------------

module CRC16_SER(

                  Reset   ,    //Reset signal

                  Gclk    ,    //Clock signal

                  Soc     ,    //Start of cell

                  Data_in ,    //input data of cell

                  Crc_out      //output CRC signal

                ) ;

//----------------------------

// SIGNAL DECLARATIONS

//----------------------------

input          Reset   ;

input          Gclk    ;

input          Soc     ;

input          Data_in ;

output [15:0]  Crc_out ;

//----------------------------

// SIGNAL DECLARATIONS

//----------------------------

wire           Reset   ;

wire           Gclk    ;

wire           Soc     ;

wire           Data_in ;

reg    [15:0]  Crc_out ;

2001/02/28 版权所有，侵权必究 第 40 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

reg            Temp    ;

integer        i,j,k,l ;

//----------------------------

// PARAMETERS

//----------------------------

parameter  U_DLY=1     ;

//----------------------------

// Crc_out signal

//----------------------------

always @(posedge Reset or posedge Gclk)

begin

      if (Reset)

            Crc_out <= #U_DLY 16'b0 ;

      else if (Soc == 1'b1)

            Crc_out <= #U_DLY 16'b0 ;

      else

      begin 

            Temp = Data_in ^ Crc_out[15]  ;

            for (j=15;j>12;j=j-1)

                   Crc_out[j] <= #U_DLY Crc_out[j-1] ;

            Crc_out[12] <= #U_DLY Temp ^ Crc_out[11] ;

            for (k=11;k>5;k=k-1)

                   Crc_out[k] <= #U_DLY Crc_out[k-1] ;

            Crc_out[5] <= #U_DLY Temp ^ Crc_out[4]   ;

            for (l=4;l>0;l=l-1)

                   Crc_out[l] <= #U_DLY Crc_out[l-1] ;

            Crc_out[0] <= #U_DLY Temp                ;

     end

2001/02/28 版权所有，侵权必究 第 41 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

end

endmodule

3.2 随机数产生电路设计

3.2.1概述

伪随机序列又称为伪随机码，是一组人工生成的周期序列。它不仅具有随机序列的一些统计特性和高

斯噪声所有的良好的自相关特征，而且具有某种确定的编码规则，同时又便于重复产生和处理，因而在通

信领域应用广泛。

伪随机序列的产生方式很多，通常产生的伪随机序列的电路为一反馈移位寄存器。它又可分为线性反

馈移位寄存器和非线性反馈移位寄存器两类。由线性反馈移位寄存器产生出的周期最长的二进制数字序列

称为最大长度线性反馈移位寄存器序列，简称 m 序列，移位寄存器的长度为 n，则 m 序列的周期为 2n-1，

没有全 0 状态。

其中，伪随机数发生器的初始状态由微处理器通过 SEED 寄存器给出。

3.2.2伪随机序列发生器的硬件实现

伪随机序列发生器的初始状态是由微处理器中 SEED 寄存器提供的，而 SEED 寄存器的位数为 8 位，所

以需要设计一种 8 位的伪随机序列发生器，它的本原多项式为：

F(x) = x8 + x4 + x3 + x2 + 1

伪随机序列发生器结构如图 1 所示。

1     伪随机序列发生器结构框图

图中 Ci 代表本原多项式 F(x)中各项的系数。

3.2.38 位伪随机序列发生器的 Verilog HDL编码

/**************************************************************************

*           Filename : rangen.v

2001/02/28 版权所有，侵权必究 第 42 页，共 56 页

Cn

a0
Êä³ ö

a1 an-2 an-1

Cn-1C2C1C0



Verilog 基本电路设计指导书
绝密

请输入文档编号

*             Auther : Verilog group

*        Description : This module is used to generate 8-bits random number,

*                      the polynomial is x^8+x^4+x^3+x^2+1.

*          Called by :

*   Revision History : 2000-5-5

*                      Revision 1.0

*              Email : zhangnb@sz.huawei.com.cn

*            Company : Huawei Technology Inc.

*      Copyright(c) 1999,Huawei Technology Inc.,All right reserved.

**************************************************************************/

//----------------------------

// TOP MODULE

//----------------------------

module RANGEN (

                Reset,   //Reset signal

                Gclk ,   //Clock signal

                Load ,   //Load seed to Ran_num

                Seed ,   //initialize Ran_num

                Ran_num  //output random number

              ) ;

//----------------------------

// SIGNAL DECLARATIONS

//----------------------------

input        Reset   ;

input        Gclk    ;

input        Load    ;

input  [7:0] Seed    ;

output [7:0] Ran_num ;

//----------------------------

// SIGNAL DECLARATIONS

2001/02/28 版权所有，侵权必究 第 43 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

//----------------------------

wire         Reset   ;

wire         Gclk    ;

wire         Load    ;

wire   [7:0] Seed    ;

reg    [7:0] Ran_num ;

integer      i       ;

//----------------------------

// PARAMETERS

//----------------------------

parameter  U_DLY=1   ;

//----------------------------

// Ran_num signal

//----------------------------

always @(posedge Reset or posedge Gclk)

begin

      if (Reset)

            Ran_num <= 8'b0 ;

      else if ( Load )

            Ran_num <= #U_DLY Seed;

      else 

      begin

            for (i=1;i<8;i=i+1)

                  Ran_num[i] <= #U_DLY Ran_num[i-1] ;

            Ran_num[0] <= #U_DLY Ran_num[1] ^ (Ran_num[2] ^ (Ran_num[3] ^ Ran_num[7])) ;

      end

end

endmodule

3.3双端口 RAM仿真模型

2001/02/28 版权所有，侵权必究 第 44 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

用一个 512X8 的双端口RAM 来实现同步 FIFO，该 RAM的仿真模型如下所述：

/*********************************************************\

MODULE: Dual Port RAM

FILE NAME: dualram.v

VERSION: 2000-4-20

AUTHOR:

CODE TYPE: Behavioral and RTL

DESCRIPTION: This module defines a Synchronous Dual Port

Random Access Memory.

\*********************************************************/

module DUALRAM(

Read_clock,

Write_clock,

Read_allow,

Write_allow,

Read_addr,

Write_addr,

Write_data,

Read_data

);

parameter DLY 1; // Clock-to-output delay. Zero

// time delays can be confusing

// and sometimes cause problems.

parameter RAM_WIDTH 8; // Width of RAM (number of bits)

parameter RAM_DEPTH 512; // Depth of RAM (number of bytes)

parameter ADDR_WIDTH 9; // Number of bits required to

// represent the RAM address

input    Read_clock;   // RAM read clock

input    Write_clock;  // RAM write clock

input [RAM_WIDTH-1:0] Write_data; // RAM data input

input [ADDR_WIDTH-1:0] Read_addr; // RAM read address

2001/02/28 版权所有，侵权必究 第 45 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

input [ADDR_WIDTH-1:0] Write_addr; // RAM write address

input Read_allow;  // Read control

input Write_allow;     // Write control

output [RAM_WIDTH-1:0] Read_data; // RAM data Output

reg [RAM_WIDTH-1:0] Read_data;

reg [RAM_WIDTH-1:0] Mem [RAM_DEPTH-1:0];

// Look at the rising edge of the clock

always @(posedge Write_clock) begin

if (Write_allow)

Mem[Write_addr] <= #DLY Write_data;

end

always @(posedge Read_clock) begin

if (Read_allow)

Read_data <= #DLY Mem[Read_addr];

end

endmodule

3.4同步 FIFO 的设计

3.4.1功能描述

下面的同步 FIFO 是上述的双端口RAM来实现的。由于读写是用同一个时钟，可以直接用 FIFO 长度计

数器产生 Empty和 Full 标志。执行一次写操作，长度计数器（Facntr）加 1，执行一次写操作，Facntr 减 1。

当下一次读地址等于写地址，并且只执行读操作时，将产生 Empty 标志；当下一次写地址等于读地址，并

且只执行写操作时，将产生 Full 标志。

3.4.2设计代码

/*********************************************************************\

Filename : syncfifo.v

Description : FIFO controller top level

Implements a 512x8 FIFO with common read/write clocks.

Author : Verilog Group

Revision : 2000-04-20

2001/02/28 版权所有，侵权必究 第 46 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Company : Huawei Ltd.

\*********************************************************************/

`timescale 1ns / 10ps

module SYNCFIFO(

Fifo_rst, //async reset

Clock, //write and read clock

Read_enable,

Write_enable,

Write_data,

Read_data,

Full, //full flag

Empty, //empty flag

Fcounter //count the number of data in FIFO

);

parameter DATA_WIDTH = 8;

parameter ADDR_WIDTH = 9;

input Fifo_rst;

input Clock;

input Read_enable;

input Write_enable;

input [DATA_WIDTH-1:0] Write_data;

output [DATA_WIDTH-1:0] Read_data;

output Full;

output Empty;

output [ADDR_WIDTH-1:0] Fcounter;

reg [DATA_WIDTH-1:0] Read_data;

reg Full;

reg Empty;

reg [ADDR_WIDTH-1:0] Fcounter;

2001/02/28 版权所有，侵权必究 第 47 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

reg [ADDR_WIDTH-1:0] Read_addr; //read address

reg [ADDR_WIDTH-1:0] Write_addr; //write address

wire Read_allow = (Read_enable && !Empty);

wire Write_allow = (Write_enable && ! Full);

/*********************************************************************\

BLOCK RAM instantiation for FIFO. Module is 512x8, of which one

address location is sacrificed for the overall speed of the design

\*********************************************************************/

DUALRAM U_RAM( 

Read_clock(Clock),

Write_clock(Clock),

Read_allow(Read_allow),

Write_allow(Write_allow),

Read_addr(Read_addr),

Write_addr(Write_addr),

Write_data(Write_data),

Read_data(Read_data)

);

/***********************************************************\

Empty flag is set on Fifo_rst (initial), or when on the

next clock cycle, Write Enable is low, and either the

FIFOcount is equal to 0, or it is equal to 1 and Read

Enable is high (about to go Empty).

\***********************************************************/

always @(posedge Clock or posedge Fifo_rst)

if (Fifo_rst) 

Empty <= 'b1;

else 

Empty <= (! Write_enable && (Fcounter[8:1] == 8'h0) &&

     ((Fcounter[0] == 0) || Read_enable));

/***********************************************************\

Full flag is set on Fifo_rst (but it is cleared on the 

2001/02/28 版权所有，侵权必究 第 48 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

first valid clock edge after Fifo_rst is removed), or 

when on the next clock cycle, Read Enable is low, and 

either the FIFOcount is equal to 1FF (hex), or it is 

equal to 1FE and the Write Enable is high (about to go Full).

\***********************************************************/

always @(posedge clock or posedge Fifo_rst)

if (Fifo_rst) 

Full <= 'b1;

else 

Full <= (! Read_enable && (Fcounter[8:1] == 8'hFF) &&

 ((Fcounter[0] == 1) || Write_enable));

/************************************************************\

Generation of Read and Write address pointers.

\************************************************************/

always @(posedge clock or posedge Fifo_rst)

if (Fifo_rst)

Read_addr <= 'h0;

else if (Read_allow)

Read_addr <= Read_addr + 'b1;

always @(posedge clock or posedge Fifo_rst)

if (Fifo_rst) 

Write_addr <= 'h0;

else if (Write_allow)

Write_addr <= Write_addr + 'b1;

/************************************************************\

Generation of FIFOcount outputs. Used to determine how 

Full FIFO is, based on a counter that keeps track of how 

many words are in the FIFO. Also used to generate Full 

and Empty flags. Only the upper four bits of the counter 

are sent outside the module 

\************************************************************/

always @(posedge clock or posedge Fifo_rst)

if (Fifo_rst) 

2001/02/28 版权所有，侵权必究 第 49 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Fcounter <= 'h0;

else if ((! Read_allow && Write_allow) || (Read_allow && ! Write_allow))

  begin

if (Write_allow) Fcounter <= Fcounter + 'b1;

else Fcounter <= Fcounter - 'b1;

  end

endmodule

3.5异步 FIFO 设计

3.5.1概述

异步 FIFO 使用完全独立的读写时钟，Empty 由读时钟产生，Full 由写时钟产生，两者关系完全异步，

所以不能采用同步 FIFO 中的计数器来产生 Empty和 Full 信号。为解决这一问题，采用了将二进制地址转换

为格雷码（Gray-code）地址的方法。

3.5.2设计代码

/*********************************************************************\

Filename : asyncfifo.v

Description : Async FIFO controller top level

Implements a 512x8 FIFO with common read/write clocks.

Author : Verilog Group

Revision : 2000-04-20

Company : Huawei Ltd.

\*********************************************************************/

`timescale 1ns / 10ps

module ASYNCFIFO(

Fifo_rst, //async reset

Read_clock,

Write_clock,

Read_enable,

Write_enable,

Write_data,

Read_data,

Full, //Full flag

Empty //Empty flag

2001/02/28 版权所有，侵权必究 第 50 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

);

parameter DATA_WIDTH = 8;

parameter ADDR_WIDTH = 9;

input Fifo_rst;

input Read_clock;

input Write_clock;

input Read_enable;

input Write_enable;

input [DATA_WIDTH-1:0] Write_data;

output [DATA_WIDTH-1:0] Read_data;

output Full;

output Empty;

reg Full;

reg Empty;

reg [ADDR_WIDTH-1:0] Write_addrgray;

reg [ADDR_WIDTH-1:0] Write_nextgray;

reg [ADDR_WIDTH-1:0] Read_addrgray;

reg [ADDR_WIDTH-1:0] Read_nextgray;

reg [ADDR_WIDTH-1:0] Read_lastgray;

wire Read_allow;

wire Write_allow;

/**********************************************************************\

BLOCK RAM instantiation for FIFO. Module is 512x8, of which one

address location is sacrificed for the overall speed of the design. 

\**********************************************************************/

DUALRAM U_RAM( 

Read_clock(Read_clock),

Write_clock(Write_clock),

Read_allow(Read_allow),

Write_allow(Write_allow),

2001/02/28 版权所有，侵权必究 第 51 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Read_addr(Read_addr),

Write_addr(Write_addr),

Write_data(Write_data),

Read_data(Read_data)

);

/***********************************************************\

Empty flag is set on Fifo_rst (initial), or when gray 

code counters are equal, or when there is one word in 

the FIFO, and a Read operation is about to be performed 

\***********************************************************/

always @(posedge Read_clock or posedge Fifo_rst)

if (Fifo_rst)

Empty <= 1'b1;

else 

Empty <= (Emptyg || (Almostemptyg && Read_enable && ! Empty));

/***********************************************************\

Full flag is set on Fifo_rst (initial, but it is cleared 

on the first valid Write_clock edge after Fifo_rst is 

de-asserted), or when Gray-code counters are one away 

from being equal (the Write Gray-code address is equal 

to the Last Read Gray-code address), or when the Next 

Write Gray-code address is equal to the Last Read Gray-code

address, and a Write operation is about to be performed. 

\***********************************************************/

always @(posedge Write_clock or posedge Fifo_rst)

if (Fifo_rst)

Full<= 1'b1;

else 

Full <= (Fullg || (Almostfullg && Write_enable && ! Full));

/************************************************************\

Generation of Read address pointers. The primary one is 

binary (read_addr), and the Gray-code derivatives are 

generated via pipelining the binary-to-Gray-code result. 

2001/02/28 版权所有，侵权必究 第 52 页，共 56 页

43906175
Line

43906175
Line

43906175
Line



Verilog 基本电路设计指导书
绝密

请输入文档编号

The initial values are important, so they're in sequence. 

Grey-code addresses are used so that the registered 

Full and Empty flags are always clean, and never in an 

unknown state due to the asynchronous relationship of the 

Read and Write clocks. In the worst case scenario, Full 

and Empty would simply stay active one cycle longer, but 

it would not generate an error or give false values. 

\************************************************************/

always @(posedge Read_clock or posedge Fifo_rst)

if (Fifo_rst) 

read_addr <= 'b0;

else if (read_allow) 

read_addr <= read_addr + 1;

always @(posedge Read_clock or posedge Fifo_rst)

if (Fifo_rst) 

Read_nextgray <= 9'b100000000;

else if (read_allow)

Read_nextgray <= { read_addr[8], (read_addr[8] ^ read_addr[7]),

(read_addr[7] ^ read_addr[6]), (read_addr[6] ^ read_addr[5]),

(read_addr[5] ^ read_addr[4]), (read_addr[4] ^ read_addr[3]),

(read_addr[3] ^ read_addr[2]), (read_addr[2] ^ read_addr[1]),

(read_addr[1] ^ read_addr[0]) };

always @(posedge Read_clock or posedge Fifo_rst)

if (Fifo_rst) 

Read_addrgray <= 9'b100000001;

else if (read_allow) 

Read_addrgray <= Read_nextgray;

always @(posedge Read_clock or posedge Fifo_rst)

if (Fifo_rst) 

Read_lastgray <= 9'b100000011;

else if (read_allow)

Read_lastgray <= Read_addrgray;

/************************************************************\

2001/02/28 版权所有，侵权必究 第 53 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

Generation of Write address pointers. Identical copy of *

read pointer generation above, except for names. *

\************************************************************/

always @(posedge Write_clock or posedge Fifo_rst)

if (Fifo_rst) 

write_addr <= 'b0;

else if (write_allow) 

write_addr <= write_addr + 1;

always @(posedge Write_clock or posedge Fifo_rst)

if (Fifo_rst) 

Write_nextgray <= 9'b100000000;

else if (write_allow)

Write_nextgray <= { write_addr[8], (write_addr[8] ^ write_addr[7]),

(write_addr[7] ^ write_addr[6]), (write_addr[6] ^ write_addr[5]),

(write_addr[5] ^ write_addr[4]), (write_addr[4] ^ write_addr[3]),

(write_addr[3] ^ write_addr[2]), (write_addr[2] ^ write_addr[1]),

(write_addr[1] ^ write_addr[0]) };

always @(posedge Write_clock or posedge Fifo_rst)

if (Fifo_rst) 

Write_addrgray <= 9'b100000001;

else if (write_allow) 

Write_addrgray <= Write_nextgray;

/************************************************************\

Allow flags determine whether FIFO control logic can *

operate. If Read_enable is driven high, and the FIFO is *

not Empty, then Reads are allowed. Similarly, if the *

Write_enable signal is high, and the FIFO is not Full, *

then Writes are allowed. *

\************************************************************/

assign read_allow = (Read_enable && ! Empty);

assign write_allow = (Write_enable && ! Full);

/************************************************************\

When the Write/Read Gray-code addresses are equal, the

2001/02/28 版权所有，侵权必究 第 54 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

FIFO is Empty, and Emptyg (combinatorial) is asserted.

When the Write Gray-code address is equal to the Next

Read Gray-code address (1 word in the FIFO), then the

FIFO potentially could be going Empty (if Read_enable is

asserted, which is used in the logic that generates the 

registered version of Empty). 

 Similarly, when the Write Gray-code address is equal to

the Last Read Gray-code address, the FIFO is Full. To

have utilized the Full address space (512 addresses)

would have required extra logic to determine Full/Empty

on equal addresses, and this would have slowed down the

overall performance. Lastly, when the Next Write Gray-

code address is equal to the Last Read Gray-code address

the FIFO is Almost Full, with only one word left, and 

it is conditional on Write_enable being asserted. 

\************************************************************/

always @Write_addrgray or Read_addrgray)

if( Write_addrgray == Read_addrgray )

Emptyg = 'b1;

else

Emptyg = 'b0;

always @Write_addrgray or Read_nextgray)

if( Write_addrgray == Read_nextgray )

Almostemptyg = 'b1;

else

Almostemptyg = 'b0;

always @Write_addrgray or Read_lastgray)

if( Write_addrgray == Read_lastgray )

Fullg = 'b1;

else

Fullg = 'b0;

always @Write_nextgray or Read_lastgray)

2001/02/28 版权所有，侵权必究 第 55 页，共 56 页



Verilog 基本电路设计指导书
绝密

请输入文档编号

if( Write_nextgray == Read_lastgray )

Almostfullg = 'b1;

else

Almostfullg = 'b0;

endmodule

2001/02/28 版权所有，侵权必究 第 56 页，共 56 页


