ARM中C和汇编混合编程及示例
这个之前学ARM时看的,本人觉得讲得不错,大家可以参考下.ARM中C和汇编混合编程及示例
在嵌入式系统开发中，目前使用的主要编程语言是C和汇编，C++已经有相应的编译器，但是现在使用还是比较少的。在稍大规模的嵌入式软件中，例如含有OS，大部分的代码都是用 C编写的，
主要是因为 C语言的结构比较好，便于人的理解，而且有大量的支持库。尽管如此，很多地方还是要用到汇编语言，例如开机时硬件系统的初始化，包括 CPU状态的设定，中断的使能，主频的设定，以及 RAM的控制参数及初始化，一些中断处理方面也可能涉及汇编。另外一个使用汇编的地方就是一些对性能非常敏感的代码块，这是不能依靠 C编译器的生成代码，而要手工编写汇编，达到优化的目的。而且，汇编语言是和 CPU的指令集紧密相连的，作为涉及底层的嵌入式系统开发，熟练对应汇编语言的使用也是必须的。单纯的 
C或者汇编编程请参考相关的书籍或者手册，这里主要讨论 C和汇编的混合编程，包括
相互之间的函数调用。下面分四种情况来进行讨论，暂不涉及 C++。

1．在 C语言中内嵌汇编
在 C中内嵌的汇编指令包含大部分的 ARM和 Thumb指令，不过其使用与汇编文件中的指令有些不同，存在一些限制，主要有下面几个方面：
a. 不能直接向PC寄存器赋值，程序跳转要使用 B或者 BL指令 
b. 在使用物理寄存器时，不要使用过于复杂的 C表达式，避免物理寄存器冲突 
c. R12和R13可能被编译器用来存放中间编译结果，计算表达式值时可能将 
R0到 R3、R12及 R14用于子程序调用，因此要避免直接使用这些物理寄存器
d. 一般不要直接指定物理寄存器，而让编译器进行分配
内嵌汇编使用的标记是 __asm或者 asm关键字，用法如下： 
__asm 
{ 
instruction [; instruction] 
... 
[instruction]

}
asm("instruction [; instruction]");
下面通过一个例子来说明如何在 
C中内嵌汇编语言，

#include <stdio.h>
void my_strcpy(const char *src, char *dest)
{ 
char ch; 
__asm 
{
loop:

ldrb ch, [src], #1 
strb ch, [dest], #1 
cmp ch, #0 
bne loop 
} 
}
int main()
{ 
char *a = "forget it and move on!"; 
char b[64]; 
my_strcpy(a, b);
printf("original: %s", a); 
printf("copyed: %s", b); 
return 0;
}
在这里 
C和汇编之间的值传递是用 C的指针来实现的，因为指针对应的是地址，所以汇编中也可以访问。

2．在汇编中使用 
C定义的全局变量内嵌汇编不用单独编辑汇编语言文件，比较简洁，但是有诸多限制，当汇编的代码较多时一般放在单独的汇编文件中。这时就需要在汇编和 C之间进行一些数据的传递，最简便的办法就是使用全局变量。

/* cfile.c
* 定义全局变量，并作为主调程序 
*/ 
#include <stdio.h> 
int gVar_1 = 12; 
extern asmDouble(void);
int main()
{ 
printf("original value of gVar_1 is: %d", gVar_1); 
asmDouble();
printf(" modified value of gVar_1 is: %d", gVar_1); 
return 0; 
}
对应的汇编语言文件

;called by main(in C),to double an integer, a global var defined in C is used.
AREA asmfile, CODE, READONLY 
EXPORT asmDouble 
IMPORT gVar_1
asmDouble 
ldr r0, =gVar_1 
ldr r1, [r0] 
mov r2, #2 
mul r3, r1, r2 
str r3, [r0] 
mov pc, lr 
END
3．在 
C中调用汇编的函数
在 C中调用汇编文件中的函数，要做的主要工作有两个，一是在 C中声明函数原型，并加 
extern关键字；二是在汇编中用 EXPORT导出函数名，并用该函数名作为汇编代码段的标识，最后用 mov pc, lr返回。然后，就可以在 C中使用该函数了。从 C的角度，并不知道该函数的实现是用 C还是汇编。更深的原因是因为 C的函数名起到表明函数代码起始地址的左右，这个和汇编的 label是一致的。

/* cfile.c
* in C,call an asm function, asm_strcpy 
* Sep 9, 2004 
*/ 
#include <stdio.h>
extern void asm_strcpy(const char *src, char *dest);
int main()
{ 
const char *s = "seasons in the sun"; 
char d[32];
asm_strcpy(s, d); 
printf("source: %s", s);

printf(" destination: %s",d); 
return 0; 
}
;asm function implementation 
AREA asmfile, CODE, READONLY 
EXPORT asm_strcpy
asm_strcpy 
loop

www.2beanet.com
ldrb r4, [r0], #1 address increment after read 
cmp r4, #0 
beq over 
strb r4, [r1], #1 
b loop
over 
mov pc, lr
END
在这里，C和汇编之间的参数传递是通过 ATPCS（ARM Thumb Procedure Call Standard）的规定来进行的。简单的说就是如果函数有不多于四个参数，对应的用 R0-R3来进行传递，多于4个时借助栈，函数的返回值通过 R0来返回。
4．在汇编中调用 
C的函数在汇编中调用 C的函数，需要在汇编中 IMPORT对应的 C函数名，然后将 C的代码放在一个独立的 C文件中进行编译，剩下的工作由连接器来处理。

;the details of parameters transfer comes from ATPCS
;if there are more than 4 args, stack will be used 
EXPORT asmfile 
AREA asmfile, CODE, READONLY 
IMPORT cFun 
ENTRY 
mov r0, #11 
mov r1, #22 
mov r2, #33 
BL cFun
END
/*C file, called by asmfile */

int cFun(int a, int b, int c)
{
return a + b + c; 
}
在汇编中调用 C的函数，参数的传递也是通过 ATPCS来实现的。需要指出的是当函数的参数个数大于 4时，要借助 stack，具体见 ATPCS规范。
小结
以上通过几个简单的例子演示了嵌入式开发中常用的 C和汇编混合编程的一些方法和基本的思路，其实最核心的问题就是如何在 C和汇编之间传值，剩下的问题就是各自用自己的方式来进行处理。

单片机，嵌入式ARM，linux，Java，PCB，FPGA，汇编C，Android，cortex-m3等课程的学习,欢迎咨询陈老师，电话18124518771 QQ：168425798
