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Road crevice recognition based on Faster R—CNN

Li Taiwen, Fan Xinwei
(School of Quality and Safety Engineering, China Jiliang University , Hangzhou 310000, China)

Abstract: Traditional road crack recognition methods are based on R—CNN, SPPnet, HOG+SVM and other methods, but the recog-
nition accuracy is low and the detection speed is slow. In view of these shortcomings, a road crack recognition method based on
Faster R—CNN is proposed. Firstly, road crack images were collected to build Pascal VOC data set. Secondly, the TensorFlow deep
learning framework developed based on Google trains the Faster R—CNN with data sets and analyzes various performance parame-
ters. The experimental results show that the training loss can be reduced to 0.188 5 and the AP value can reach 0.780 2 in the
case of 20 000 iterations, achieving good results.
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