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Abstract: Aiming at the problem that the vehicle logo detection has long detection time, low detection rate and few identifiable
types, a method using You Only Look Once(YOLOv3) network is proposed. In order to make the network suitable for vehicle target
detection of small targets, the target feature extraction structure Darknet—53 is replaced with Darknet—19 and the multi—scale pre-
diction layer is reduced to two layers to reduce the number of network parameters. At the same time, in order to increase the pro-
portion of the car logo in the image and let the convolutional neural network can learn more car logo features, this paper adopts a
method of cutting the vehicle from the image and manually marking it, constructing a class of 46 vehicles Data set(VLDS-46). The
experimental results show that when the model is used for vehicle logo detection, the real—time requirement can be achieved while
achieving high detection rate, and the average detection time is 9 ms.
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