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Abstract: In order to solve the problem of the poor matching_eff@gt

ienceé and Technology of China, Hefei 230026, China)

ofJstereo image in low texture and occlusion area in traditional stereo

ing algorithm based on convolutional neural network (CNN). The al-

matching algorithm, this paper designed an end-to-end ster%
gorithm adopts residual convolutional neural network tdlextragt®the image features,and then uses the atrous spatial pyramid pooling ( AS-

PP) module to obtain the context information of
to regularize the cost volume,and finally realizes t

ity map on the KITTI2015 testing platfo
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aand combines the multi-scale three-dimensional convolutional neural network
h-precision stereo matching algorithm. The mismatch rate of the obtained dispar-
as 2942% . Compared with the Geometry and Context( GC) network, the accuracy of the
| as the running time was reduced by half.
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