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Monkey image classification method b improved VGG16
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Abstract: In order to improve the accuracy and speed of fine-gfdinedflimage classification,an image classification method based on im-
proved VGG16 and migration learning is proposed. Firstly @rem monkey datasets are obtained from the kaggle platform,and the

ise,and the datasets are transformed into the unified TFRecord data for-

datasets are standardized , including image de pepper ¢
mat provided by TensorFlow. Then, the improve fonvolutional neural network is migrated. The optimization of the model in-
cludes using Swish as the activation function, com ¢ softmax loss with center loss as the loss function to achieve better clustering

effect,and using Adam optimizer with p t pegformance. The training set is used to train the model to determine the fine-tuning pa-

rameter information,and then the test d to test the accuracy of the model. The results show that the accuracy of monkey image

classification can reach 98. 875% classification speed has been significantly improved. Compared with other traditional convolu-
tion neural network models, od has higher accuracy and applicability.
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LY pIES ReLU Swish
] WAL MR/ % MR/ %
VGGI3 10 000 96.58 97.16
MNIST VGG16 10 000 98.44 98.83
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VGGI3 10 000 89.23 89.56
10 FAFMET  VGG16 10 000 95.82 98.48
AleNet 10 000 90.03 90.45

2.5 Adam {28

FEZHAR B A Adam {4k 2%, 5 & — Fl [ 3%
P72 ) S A S, e — ot B HL b R B AT —
BB SR AL A B0 Adam B3k 5 (LG HE B T %
PeAb 2810 X BIFE T, e 5 S 45— A S 50 ~r
[ 1 35 O P2 0%, 3 sk X A — A A
TSR R s 2 R

Adam B AdaGrad B Hl RMSProp 8 ¥ A
GhAy S % 2, Hih AdaGrad 554 g S 1
B R AT B80T B A [ 1 2% 30 5% AR 48 2 808 1k 1
P IR 5 SF 8 6 4 HEAT 37 . RMSProp
&ﬂ%ﬁﬁ%ﬁm&ﬁ%m¥ﬁﬁﬁ%7$
VAT B % AT A0 e B b R i S ﬁ@
Adam 553 (9 96 2 5 4 20, i i R A S0k T
it e 3 ) S, 5 T A A A 2 5 11
0. B AT BF 1 R Pk 4 % W
Wesrm e LA

m, =uxm,_, + (1 - (8)
n, =vxn,, + (lag : (9)
m, = m/(1 =) (10)
ho= 0/ (1= 0,) (1)
A6, = - m/(Jn, +8) xn (12)

ST, m, SR BE B — B, B 1
B AT T X BRI B | g | R E | g | 1
s m, o n, SIS m, R, B IE A2 X
R LoD oY S A
3 LRERSHH

AU T AT RS2 5T, T 52 90X 4R FE f
TP 10 40 2 1 50 0 0 (0808 WL SE 1Y VGG16 #
RUEAT T WO . B0 4 % A Kaggle -4 E3KEAY
10/ R 7 1 35 7 PR L 7 538 T 1) 0 4 030 1

; (15 &H AR S5 M 2455 4)2020 5 4

B HEAT U (G — K Bk B R Bl VGG16_2) o
ISR Dy, m il FIHER A e &WE TR
I 2k TRl it A 7E 6 1 D7 iz ] NVIDIA (Y
GPU X B AL HE AT YN 25, (1 15 465 B A 28 I 4% 1) 1] 25 ik
FEAFEN T ORME FE 4R T AR TR EEAE o — KA B
Y558 B, CHE BT AN TG 22 1 A /Nl vl LA 3k 2] 3
WRCR .

BERLYI L5 (1 ] B 575 22 AR A7 B — 20 1 RS 80
4 of ) AR TR 5 A LA K R I R AL A D, LA S
SL P ] R B i AT DU AT AR B R )
ST BB Y XA R ) R AEfd ] Saver 28
T save PRI, PRAFI 23 77 AR U2 SCF AL 4E . me
ta” SO H] T DR A EDE 1% “. data” SCOF TR
FEAR HE M ;. index; Thn A A E B U
T LU PJ?EQ? int” SO T A K Ay
HAN R B EMLSE PR 2 ASERY I F] Saver 28t
) restore X BB SR N R B 2 AR A A
EI]TU%

I 2 1 450 3
162 (i % . 3 i Yo i 45 B R X T

AT 3L, i A £E A

?l@ 32K [ B SR AT LA F) 98.875% . 8] 6,
ﬁj\j”a' i T R U2 DA B 2 B i S R0 o A 2R

0.6 o e
0.5 —— lesling —e— lraining

0.4
£0.3
0.2
0.1

0 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

epoch
Fo Hikmaste

1.02

—— lesling =@~ lraining

| .
_ 098 i e
£°0.96
= 094

1 2 3 4 5 ﬁ 7 8 9 10
epoc
B 7 HER R AR L

N T RISk Y VCG16_2 #5570 HAT B 4 () 3R
S fig , AL A F B 4R 4 il E VGG VGGI3 |
VGG16 | alexnet, VGG19 _bn | inceptionv3 | resnetl 52 _
v2 DA R Bt b i) VGG16_2 kA7l 4h , 78 AS [) 455 7Y
R R A 3 s, AR AT LLF &t

39 5% 5 M




Artificial Intelligence Technology e ITNS ERIEE . ATEHBERAK

R VG162 MY ERG R . £ 4 5 T X T
AN Ta) T 2 (9 AR ) R

K3 OBRTREEERFBA Loy A Rk

i sk S5 AT LAIE W) 28 0 2otk iy VGG16_2 A
XA R 43 25 B S 4F i PERE .
4 it

ARICHETF TR F LT X 10 FhA [ AT E

T 0 A5 Y I GR B HE T R/ % 3K W R % . . . n
VGG 80.23 78.21 AR, SR T 38 I 1% B B i AR AR Gk B T 41
VGG13 83.75 80.34 TUROR X & 48 VGG16 BERIHEAT T 2lc i, 23 5 A
VGE16.2 98.875 95.62 VAT R RS R R BRI AR AR 2R 0 A RN T AR R
alexne 84.35 79.83 e e N
e oo oo VGGI6_2 7 2544 R ELAT A, DL B AE 4% R
mcep monv. . . N N N " “
VGG16 90.21 89.25 VERE B DL I Swish 135 PRZX .center loss 55 softmax loss
VG619 6n 86.32 78.62 AHES G W0 % R 2L Adam {0 Ak &8 X BB HE 47 58 35 o
k4 10 £B%F AL VG162 Ly F
\ 3
mantled bald japanese black_headed nilgiri gm Xd silve common
M+ 2 N tl " Patasmonkey K _ e N . ht_ N N ! o e yjr h ry_t irrel _k
owler uakari macaque night_monkey angur marmos; pacnin marmoset squirrel_monkey
HAER/ % 96.452 97.432 98.532 97.856 97.789 98.112 98.4 98.525 97.425 96. 633

2 f e B DA B0 E , Bk B VG G162 FE AL i 8 4
HERG R =k 98.875%  JL A Wik, LAY A A 15 $2 T
[ 25 8], I LT XT3 A R B G 0 45 38 77 X A5
RUHEAT 583 | LA B 13008

B & Tk

HID]. KK : Akl K2 ,2019.
[2] Z2We. 3T BB AR & W 4% 14 1) 18] e 510 7500
2 B TR 24,2019.

D] A W T
[5] ®A5E. BT EH 5 ) 1)
M2 ,2019.
[6] BRIBAR , o7 iz, 3T B 5 > FIE TR M 2 I 4% 1 4 4l
FEIARSILTT. 52 HLM T, 2018 ,38(S2) :290-295.
(7] 35 &% &G, sk DI . 5 T O sk 20 v (8 0 D5 1) 0 A 81 15 25 I
IR LI]. LB AR ,2019,34(5) :42-47.
(8] AL, NI, WM, 5. T 18 355 7 r (i 08 0k v e e
RN IR T]. 9 B 5 I & ,2019,39(9) < 141-145.
[9] ALKASHASH A M, AWAD S, COLLINGWOOD R, et al.

Classification of pap test images using TensorFlow as an

ROPRBTD]. KA H

open source artificial intelligence software [ J]. Journal of

the American Society of Cytopathology,2019,8(5) :29-30.
[10] LIU T J,GUO Q Q,LIAN C F,et al. Automated detection
and classification of thyroid nodules in ultrasound images

using clinical-knowledge-guided convolutional neural net-

[1] illi%ﬂél.%ﬂﬁ%ﬁﬁwélm%@{%%ﬁiﬁ&ﬁﬁ%(@()

4
work dical Image Analysis,2019,58.10-12.
[11] ‘@iliﬁﬂ@%ﬂﬁﬁlm%w]ﬁ%%:?ﬂjls
sﬁ,l‘ﬁ??{ﬂ,%ﬁ. He T W 2% 1Y Center Loss 51k
WoE[T]. W5 AR ,2019,52(8) :1878-1883.
(137 X4E. P B 46 b i S NE0TS s B F5E (D). )
JH 4B BT k24 ,2018.
[14] SR, M F s, FhERM , 55 . Swish 0 o B0LE P /NS4
AR ERPERERILLT ] BHERH 5 % 1] ,2018 (1) :4-5.
[15] W0, & #k, 20, 55, 2T Dopout 5 ADAM k1L
v B E CNN Bk [J]. derp B g K224l ( H R B2
MZ) ,2018,46(7) :122-127.
[16] & FI. &F/NEAELS Adam fifbH LSTM H 4 50
FFE[D]. 220 : 22 JH K2 ,2019.
(17 ] TR 5T U B 2 ) 36 B 4 ) 4% P800 00 452 R 1 F
FOTATERIT ()] A5 B8 AE ,2019(7) :7-8.
(18] w7 M. Je T 22 RUBE o 1k 1 45 FR il & I 4% [R5 43 25 T
EAEID]. A3k 5 R R4 ,2019.
[19] E& . R a4 TN 4 (1 1 it B 7 B8 43 25 vh iy i
FID]. 8% . P48 T. K2 ,2019.
(W& # H 14 :2020-03-30)

EEE N :

Hhn % (1996 — ) , &, Bl fF 5 A, BRI I5 1 AT
HhE.

ML (1971 =) 58 W, B 2042, EENFFE 7. A
T e B

(FBHARE M %% 42)2020 F5% 39 £54 5 M 11



hR AR 7= FA

GAEH A, R TR A & N EAEER) BT (15
ERHAE NGz &, LREKRTHE R BIETHIM .
LR A/ N ATFIE G A PP IL %R B Fe b AT13 6 N 44535,
AGAFBERE, BE—ERMSELTRF S IEE EE.
MR AL L,

BE B AT, AL LEEA T B BT o IR E
(CNKI). 7 7 &35 it R 5-F 6« F AT 88 & (4
LW ). IST B AHHEEARIREAM HIE S SR E A T
.

*t T ik R B 2R AT A S ik iR AR R ARE ALY L 4B 4R
Fa AL RFIHERIR—I) b B AT R Y E SR A.

R

(FREAREM & ZE) JiEl
i R B ET R A RSB ANPTIRT





