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Abstract : Aspect —level sentiment analysis lag

on deep learning, and a neural network model combined with attention
mechanisms achieve good classification results. common methods only consider single —level attention mechanisms and
cannot obtain inter —sentence dependendies. b this paper,a hierarchical dual attention neural network model for aspect—

level sentiment analysis was desig introduces the attention mechanism of aspect targets for specific aspects, and the

text context self-attention mecha obtain aspect characteristic information and global dependency information of sen-

tences; designs Hierarchical twork, in which the word layer embeds specific aspect information to obtain the inter-
nal characteristic informatio > sentence for the aspect target,and the sentence layer network uses the dual attention
mechanism and the input of the word layer to obtain the feature—dependent information between sentences and to achieve
a deep level aspect emotion classification. A comparison experiment was performed on the two SemEval 2014 datasets and
the Twitter dataset to verify the effectiveness of the method. The classification accuracy rate for aspect —level emotions
was effectively improved.
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