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Abstract : Due to the increasing nu alware and the updated attack means, malware detection combined with machine
learning technology is a new di its development. Firstly, this paper introduces the static detecting methods and
dynamic detecting methods of briefly; summarizes the general process of malware detecting methods based on machine
learning, and reviews the exi methods with research progress. Using the data sets of Ember 2017 and Ember 2018,
the structural feature correlation methods, including RF(Random Forest), LightGBM, SVM (Support Vector Machine), K-means
and CNN(Convolutional Neural Network), are analyzed and validated,and the 2019 sample set analysis is used to validate
the serialization feature correlation method, including several common deep learning algorithm models. The accuracy, preci-
sion, recall and F1_score of the trained model on different testing data sets are calculated as evaluating metrics. According to
the experimental results, the advantages and disadvantages of various methods are discussed in this paper, the generaliza-
tion ability of the tree model is verified and analyzed emphatically. It is shown that the model generally has degradation
problem with the continuous evolution of samples, and the further research direction is pointed out at last.
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