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i¢1al intelligence technology in the military field, the design method

Abstract; Aiming at the application problems and difficultigs
of military hardware and software architecture based o e 1@‘ ng technology is studied. Combined with the mainstream software and

hardware infrastructure in the industry,the key techn
key technologies of software and hardware archi

and distributed training, this paper designs and buil

telligent computing platform to provide
collaborative intelligent computing
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ied)and solutions in military applications are analyzed. Through studying the

including deep learning model compression transformation, data enhancement
a one-stop artificial intelligence development platform and an embedded edge in-
erttraining,department and test support for military Al It provides a software-hardware
or future intelligent unmanned combat system.
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