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Abstract : Aiming at the problems of low 1reco@b uracy and long time —consuming in the recognition of similar
shape objects by deep learning, a recognitio ased on improved LeNet—5 is proposed. Based on the traditional

LeNet -5 network, changing the convolutiona into a double —layer asymmetric convolution makes the network have
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better feature extraction capabilities; theg generaliZtion ability of the network is improved by batch normalization; the orig-

inal Flatten layer is replaced by glo erage pooling , which is used to overcome the shortcomings of the traditional ful-

ly—connected layer with many and long time —consuming; the training sample is increased by augmenting the

training set. Experimental resu that the training accuracy of the improved LeNet—5 network reaches 91%, the ac-

curacy of identifying objec stmilar shapes is 87%, and it can converge within a small number of iterations. These

indicators are significantly bett® than the original network.
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Layer (type) Filters Kernel_size Output shape
' Convl 32 (3.3) (128 ,128) 32
(%0, 030, Max_pooling_1 (64,64) 32
1 L0 0% Conv2 32 (3.3) (64,64) 32
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° Dense_1 512
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3
LeNet-5 LeNet-5
0~10 0.426 0.654 1.031 1.234
10~20 0.605 0.748 0.912 1.075
20~30 0.711 0.812 0.742 0.723
30~40 0.699 0.803 0.642 0.637
40~50 0.734 0.817 0.588 0.548
50~60 0.762 0.818 0.514 0.541
60~70 0.774 0.844 0.476 0.489
70~80 0.787 0.882 0.462 0.424
80~90 0.814 0.902 0.471 0.414
90~ 100 0.818 0.875 0.421 0.377
100~ 110 0.824 0.901 0.404 0.345
110~ 120 0.827 0.885 0.356 0.296
130~ 140 0.839 0.896 0, 0.284
140~ 150 0.835 0.914 ()Q 0.287
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