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1stics based on road video are classic problems in the field of comput-

Abstract: Real-time vehicle detection, classification an fi
er vision. The traditional method of setting the detectiom, bel@is prone to missed inspection and re-inspection,so the automation perform-

ance is not good. The real-time performance of
ground , moving non-vehicle objects are often includéd

at night is not good. Therefore ,an algori

rectly obtained. Instead, it cuts o
background disturbances and cla

and the position output of the

% algorithm based on deep network can be guaranteed, but the changing back-
and the change of illumination is sensitive at the same time,so the classification
is pgposed to perform target detection by one-stage,and the classification result is not di-
ject according to the bounding box, removes the background, and improves resistance to
accuracy. Then it is sent to a transfer learning shallow neural network. The classified output

etection network are combined and sent to a full map matching algorithm for traffic flow statistics.

While ensuring real-time performance,the rate of missed inspections and re-inspections is reduced.
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