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Abstract: This paper designed a pedestrian detection algorithm
work ( ResNet) was used as a feature extraction network, combi
prediction was used for prediction. This paper also regarded th

bined the shallow feature map with more detailed informati

t nchor-free detection framework. The deep residual net-

ith the feature pyramid structure (FPN) ,and finally multi-scale
rgel) center point and size as an advanced semantic feature,,and com-

e deep feature map with more semantic information. The experiments

were verified on the Citypersons dataset. Compared w'@ ting pedestrian detection algorithms, the detection results were respec-
tively improved by 1.11% ~3.01% , 0.15% ~ 0.59% ~6.39% in the case of slight occlusion, general occlusion and se-

vere occlusion, and the detection effect is better.
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