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Abstract: In this paper, a micro—expression and vehicle status recognition method based on blocked local binary pattern from three
orthogonal planes (LBP-TOP) features and weighted sparse representation as the classifier is proposed. First of all, the effective
block is selected from the blocked image. Then, the features, which are extracted from LBP-TOP feature descriptor, are used as a
dictionary. Then the combined weighted sparse representation(WSRC) and the dual augmented lagrangian multiplier(DALM) algorithm
performs sparse representation classification. Finally, the images are divided to different sizes blocks, then the effective block is cho-
sen from these blocks, and the features are merged as the input to the classifier. The experiments are carried out on the CASME
Il ,SAMM and vehicle databases using leave —one —subject—out cross validation (LOSOCV). When classifying the micro—expressions
into five categories, the classification accuracy can reach separately 77.30% and 58.82%, and the experiment on the database of
vehicle state detection reaches 84.60% detection rate. Experimental results show the effectiveness of the proposed algorithm.
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