http://www.chinaaet.com

Communication and Network

NLOS WSN *

1 1 2 1 1

(1. , 113001
2. ; 113001)
, LOS , NLOS
, o , (MKF) o ,
. , (LKF) ,
MKF NLOS . , (UKF)
: TN911.23 i A DOI : 10.16157/j.issn.0258—7998.200409
, , , . NLOS WSN 1. ,2020, 46

(12).78-82,88.
: Wang Qinrui, Huang Yueyang, Shi Yuanbo, et al. Research on the location system of rescuers based on WSN in

NLOS environment[]J]. Application of Electronic Technique ,2020,46(12).78-82, 88.

Research on the location system of rescuers based on WSN in NLOS environment

Wang Qinrui', Huang Yueyang', Shi Yuanbo?, Zhang Jixiang', Zuo Ziyi'
(1.The School of Information and Control Engineering, Liaoning Shihua University , Fushun 113001, China ;
2.The School of Computer and Communication Engineering, Liaoning Shihua University , Fushun 113001, China)

Abstract: During the process of large building disaster, due to the adverse effects of toxic smoke, noise, fire, electricity leakage,
light and other factors, as well as the complex internal structure of large buildings, it is difficult for many rescuers to obtain reli-
able information. Considering the above situation, wireless sensor networks can play their advantages in positioning indoor complex
environments. But there is a challenge. Although their positioning accuracy is very high in the LOS environment, their measurement
may be polluted by non-line —of —sight propagation in the NLOS environment, which results in a decrease in positioning accuracy.
To solve this problem, we propose an improved location method based on unscented Kalman filter(UKF). Firstly, the propagation
state between mobile node and beacon node is identified by means of test statistics. Secondly, the linear Kalman filter (LKF)
is used to measure the distance smoothly. On this basis, a modified Kalman filter (MKF) is used to weaken the influence of NLOS
on the measurement. Then, the UKF method is used to determine the location information of the unknown mobile node. Finally,
the effectiveness of the proposed algorithm is verified by numerical simulation.
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