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GSDCPeleeNet : efficient lightweight convolutional neural based on PeleeNet

Ni Weijian, Qin Huibin
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Hangzhou 310018, China)

Abstract: Convolutional neural network plays an important role in various fields, especially in the field of computer vision, but its
application in mobile devices is limited by the excessive number of parameters and computation. In view of the above problems, a
new convolution algorithm, Group —Shard —Dense —Channle —Wise, is proposed in combination with the idea of grouping convolution
and parameter sharing and dense connection. Based on the PeleeNet network structure, an efficient lightweight convolutional neural
network, GSDCPeleeNet, is improved by using the convolution algorithm. Compared with other convolutional neural networks, this
network has almost no loss of recognition accuracy or even higher recognition accuracy under the condition of fewer parameters. In
this network, the step size s in the channel direction of convolution kernel in the 1x1 convolutional layer is selected as the super
parameter. When the number of network parameters is smaller, better image classification effect can be achieved by adjusting and
selecting the super parameter appropriately.

Key words: image classification ; convolutional neural network ; lightweight ; dense connectivity ; parameter sharing ; grouping convolution
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