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Abstract: The performance of wireless sensor networks(WSNs) depends on the quality of the data collected. At first, the data sensed
by the node is rough, and an effective data detection algorithm should be used to distinguish abnormal data from normal data.
Therefore, binary space partition—based anomaly detection(BSP—AD) algorithm is proposed in this paper. The BSP—AD algorithm trains
and tests data through binary space partition(BSP) trees. Firstly, the range of normal data is obtained through the training data,
and then some abnormal parts in the test data are detected through this range. Simulation results show that the proposed BSP—-AD
algorithm can accurately detect abnormal data, and the cost of calculation and storage is lower than IDLO algorithm.
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