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Low—power edge Al face detection and tracking system

based on improved MTCNN algorithm

Qi Xingchen , Zhuo Xusheng
(School of Information and Electrical Engineering , Wuhan Institute of Technology , Wuhan 430205 , China)

Abstract: The rapid development of edge devices and the application of deep learning are increasing, the trend of combining the
two is becoming more and more obvious. The potential of Al applications for low—power edge devices has not yet been fully devel-
oped. A large number of devices hide a lot of computing power. The social and economic benefits brought by the release of its po-
tential are very obvious. Therefore, taking the more common face detection in objective detection tasks as an example, the MTCNN
face detection algorithm is improved and transplanted to a low—power embedded platform with extremely limited resources. Under
certain environmental conditions, the face is finally successfully detected,and the face candidate boundingbox is drawn, it has face
tracking function combined with the servo.
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