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Overview of 2D human pose estimation based on convolutional neural network

Qiao Yi,Qu Yi
(College of Information Engineering, Engineering University of PAP,Xi"an 710086, China)

Abstract: With the rapid development of deep learning, 2D human pose estimation is used as the research basis for other comput-
er vision tasks, and its detection speed and accuracy have practical significance for subsequent applications. This paper introduces
the methods of 2D human pose estimation based on convolutional neural networks in recent years. The existing methods are divided
into human body detection combined with joint point regression algorithm and human body joint point detection clustering algorithm.
At the same time, the current mainstream datasets and the evaluation criteria are summarized, and finally the current difficulties
and future development trends of 2D human pose estimation are explained, which provides some references for related research on
pose estimation.
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