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A telecom fraud identification method based on graph neural network
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Abstract: While communication technology brings convenience to people, telecom fraud also increases sharply. Traditional detection
methods are mainly based on data mining and statistical learning of history data. However, due to the high similarity between fraud
behavior and normal business, traditional statistical methods are difficult to screen. This paper proposes to transform user communi-
cation relationship into a set of topological features and establish communication social directed graph, where vertices with statistical
characteristics represent users and edges with relational characteristics represent activities between them. On the basis of the commu-
nication social graph, the potential characteristics of the communication social network are leammed through the graph neural network,
and the information characteristics of multiple nodes are aggregated through pooling readout mechanism, in order to identify the tele-
com fraud users. The validation of real communication history data shows the effectiveness of this method.
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