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CT image segmentation of liver hydatid disease based on Faster RCNN and LGDF
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Abstract: In view of the large workload of manual image reading, poor image reading quality, and prone to missed inspections and
wrong judgments ,in this paper, the faster RCNN target detection model is applied to the detection of hepatic echinococcosis CT
images. And the target detection model is improved: based on the characteristics of low image resolution and different lesion sizes, the
residual network with deeper network depth(ResNetl01) is used to replace the original VGG16 to extract richer image features;
according to the coordinate information of the lesion obtained by the object detection model, the LGDF model is introduced to fur-
ther segment the lesion to assist doctors in diagnosing the disease more efficiently. The experimental results show that the object
detection model based on the ResNetlO1 feature extraction network can effectively extract the features of the target, and the detec-
tion accuracy is 2.1% higher than the original detection model, and it has better detection accuracy. At the same time, the coordi-
nate information of the lesion is introduced into the LGDF model. Compared with the original LGDF model, the segmentation of
hepatic hydatid lesions is better completed, the Dice coefficient is increased by 5%, and the segmentation effect is better especially
for the multi cystic liver hydatidosis CT image.
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