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Abstract: Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-—intru-
sive load identification.In this paper, a ReliefF —DDC feature selection algorithm was proposed to reduce feature dimension, reduce
complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and
category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information
analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation mea-
surement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm
proposed in this paper improves the classification effect and reduces the running time.
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