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Abstract: Extremely massive multiple input multiple output(MIMO) has shown considerable potential in future mobile communications.
However, the use of extremely massive aperture arrays will lead to spatial non—stationary channel conditions,and each antenna of
the base station is equipped with a high—precision quantizer, the power consumption of the system will be greatly increased, which
will hinder the widespread application of ultra—large —scale MIMO systems. Therefore, this article assumes that each antenna of the
base station is equipped with a pair of 1-bit analog—to—digital converters(ADC), and uses the mapping relationship between the
sub—array and the user to describe the non-stationary channel characteristics. Based on the powerful generalization ability of neural
network (DNN), this paper designs a new generative supervised DNN model that can be trained with a reasonable number of pilots.
The simulation results show that the proposed network can achieve better estimation performance with less pilots and achieve a good
balance between performance and complexity.
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