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Abstract: In the 3D recognition method based on 2D multi —perspective, multiple 2D projected images can be used to represent
the feature information of 3D model. However, the features of projected images from different perspectives are different, and the
learning efficiency of the neural network is also different. The convolutional neural network can map the features of images, and
this method can be used to analyze this problem. The importance of projection features of different perspectives in the convolutional
neural network was analyzed in the mix—view data set, and the collection density of the mix-view data set was optimized according
to the different importance. The final experimental results show that the classification accuracy of 2D images generated from different
perspectives is different, among which the classification accuracy of overhead projection is the worst, and the optimized data set
achieves the optimal classification accuracy in the same neural networks model.
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