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Abstract: Embedding non—intrusive load identification technology in the power supply entrance is conducive to promote building
energy saving, realize power grid load forecasting, develop intelligent buildings and improve the construction of smart grid system.
Therefore, this paper proposes a non—intrusive power load identification method based on directed acyclic graph support vector
machines (DAG-SVMS). Firstly, the event detection of power system bus current signal is carried out. After the transient event is
detected, the transient current waveform of the target load is separated and the features are extracted. Then, the features are input
into the pre trained DAG-SVMS model for classification and identification. In order to improve the performance of the classifier,
particle awarm optimization(PSO) algorithm is used to optimize the parameters of the DAG-SVMS model. In order to reduce the cumu-
lative error, Gini index is proposed to optimize the node order of DAG-SVMS. The experimental results show that the proposed
method has high recognition accuracy, fast recognition speed and feasibility.
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