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Abstract: In the automatic detection, the road damage data set has the problems of difficult detection of small target damage and
imbalance of categories, resulting in low accuracy and high false rate of road damage detection. For this reason, based on the
DSSD (deconvolutional single shot detector) network model, a road damage detection algorithm combining attention mechanism and
Focal loss is proposed. First of all, ResNet—101 with higher recognition accuracy is used as the basic network of the DSSD model.
Secondly, an attention mechanism is added to the ResNet—101 backbone network, and the channel domain attention and spatial do-
main attention are combined to achieve the weighting of features in the channel dimension and the focus on the spatial dimension,
and improve the detection effect of small target road damage. Finally, in order to reduce the weight of simple samples and increase
the weight of difficult—to-classify samples, Focal loss is used to improve the overall detection effect. It is verified on the data set
provided by the Global Road Damage Detection Challenge competition. The experimental results show that the average accuracy of
the model is 83.95%, which is more accurate than the road damage detection method based on SSD and YOLO network.
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