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Forward—backward box smoothing with quantized measurements

Sun Wen
(Southwest China Institute of Electronic Technology , Chengdu 610036, China)

Abstract: In this work, we are interested in promoting tracking accuracy of target in quantized measurements by taking the de-
laying measurements into consideration. Specifically, a novel forward—backward box particle smoothing algorithm is proposed. In the
forward pass, the algorithm iterates with standard box particle filter. In the backward pass, smoothing posterior density is approxi-
mated by box particles. An extra moving step of box particles is proposed to concentrate the box particles around the target. Simu-
lations under quantized measurements are presented to verify the accuracy promotion of proposed algorithm.
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