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Abstract: In the past few years, video action classification has gradually changed from manual feature selection to deep learning
end —to—end model. This article discusses the traditional action classification method of manually selecting features and the action
classification method based on deep learning, focusing on different deep learning methods including convolutional neural networks,
recurrent neural network, dual-stream network, long and short —term memory network, etc., and it summarizes the commonly used
video action classification data sets, summarizes and prospects the development of video action classification methods.
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