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Abstract: Object detection methods have great value in the application field of video surveillance. At present, it is difficult to real-

ize real —time object detection in resource constrained video surveillance system. A object detection method based on improved

YOLOv3—tiny is proposed. Based on the YOLOv3—tiny architecture, the algorithm optimizes the backbone network by adding feature

reuse, and a fully —connected attention mix module is proposed to enable the network to learn more abundant spatial information,

which is more suitable for object detection under resource constraints. The experimental data shows that compared with YOLOv3 -

tiny, the algorithm reduces the model volume by 39.2%, the amount of parameters by 39.8%, and improves the mAP of 2.7% on

the VOC data set, which significantly reduces the occupation of model resources while improving the detection accuracy.
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