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Abstract: In the vehicular ad—hoc network, attackers can publish false traffic information by forging or tampering with messages,
etc., resulting in traffic congestion or even serious traffic accidents. However, traditional intrusion detection methods cannot meet the
application requirements of vehicular ad—hoc network. In order to solve the problems such as low performance, instability and high
storage and time cost of intrusion detection methods in the current vehicular ad—hoc network, this paper proposes an intrusion detection
method L —DenseNet (Light Dense Neural Network) based on dense neural network. The L —DenseNet is proposed to reduce the
complexity of the model and improve the training speed and deployment adaptability of the detection algorithm. The proposed
method is more suitable for intrusion detection in vehicle ad hoc networks. This paper conducts comparative experiments on the
VeReMi dataset. The results show that the method proposed has the best overall performance in identifying various types of attacks
in terms of precision and recall. As the same time, this method has less time cost and storage overhead.
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