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Abstract: In order to realize the rapid and high —precision recognition of air—based downward —looking infrared targets, a single —
stage space —based down —looking multi —angle infrared target recognition algorithm is proposed. Firstly, use Darknet-53 combined
with SPP module to perform feature extraction on infrared targets, to fuse local features and global features to improve the expres-
sion ability of feature maps, and finally use Focal loss in RetinaNet to lock the detection box of the target, and at the same time
obtain the target type and detection accuracy. Aiming at the defect that the existing data sets are mostly head —ups and single
viewing angles, a composite —wing drone was used to collect infrared images from different heights and angles, and a multi —scale
down—view infrared target data set was constructed, which was implemented and verified on the PyTorch architecture. The proposed
algorithm achieves 91.74% of the mAP of the downward—looking infrared target, the recognition speed is 33 FPS, and it also has
a good recognition result on the public infrared ship data set. The experiments show that the algorithm meets the real—time require-
ments on the basis of ensuring accuracy, and provides theoretical technology for subsequent real—time recognition of multi-scale tar-
gets on compound—wing UAVs.
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