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Abstract: Wind energy is the most widely used renewable energy. Accurate wind speed prediction is critical for the safety and sta-
bility of wind power system. Besides traditional numerical weather prediction, the machine learning technique has been used in wind
speed prediction of different time scales. However, most previous studies focused on the wind speed sequence of single station and
ignored the spatial dependency and correlation of wind. To improve the prediction with spatial information, this paper tries to extract
the wind spatial correlation features in one region area and reconstruct the wind speed using deep belief network (DBN). The experi-
ment results of different regions prove that the spatial deep belief network can reduce the prediction error significantly and increase
the accuracy of wind speed prediction by 0.4 m/s on average.
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