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Abstract: With the scale development of electric vehicles, the load of charging stations has a certain impact on the power grid. In
order to ensure the power grid run steadily, an electric vehicle charging load forecasting model based on the integration of eXtreme
Gradient Boosting(XGBoost) and Light Gradient Boosting Machine (LightGBM) is proposed. This method uses the strategy of stacking
integrated learning. Firstly, the base models of load forecasting are constructed based on XGBoost and LightGBM respectively. And
then Ridge Regression(RR) algorithm is used to fuse the output results of the base models, the fusion result is the load forecasting
value. Based on a variety of different load forecasting models, comparative experiments are carried out with the order data of charg-
ing station located in Jiading District, Shanghai. The results show that the load forecasting model constructed by this method has
higher forecasting accuracy than the model based on single algorithm, and has certain theoretical and practical value for the smooth
operation of power grid.

Key words: electric vehicle ;load forecasting ; Stacking integrated learning ; eXtreme Gradient Boosting (xGBoost); Light Gradient
Boosting Machine (LightGBM)
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