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Graph neural network recommendation combining user behavior and comment text

Hu Yifan, Yang Xiaojian, Qin Lin
(College of Computer Science and Technology , Nanjing Tech University , Nanjing 210000 , China)

Abstract: The existing recommendation algorithm based on graph neural network can make use of graph structure information to im-
prove the recommendation effect, but the main graph structure revolves around a kind of interaction between users and items, but
ignores multiple behaviors of users. For example, click, bookmark, share, add to shopping cart, etc., all express different semantics
of users, and comment information may affect the next purchase intention of this type of item. To this end, a graph neural network
recommendation algorithm based on user behavior and comment information is proposed. The algorithm learns the strength and se-
mantics of user behavior through the graph convolutional network, and then uses the comment text graph to represent the prefer-
ences of users and products in the learning reviews, and finally combines them to improve the recommendation effect. According to
the experimental results, it is found that the algorithm can improve the recommendation effect to a certain extent.
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