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Emotion recognition of EEG signals based on weighted KNN algorithm

Cai Jing, Yuan Shouguo, Li Rui, Xu Menghui
(School of Instrument Science and Electrical Engineering, Jilin University , Changchun 130061 , China)

Abstract: Emotion is closely related to human behavior, family and society. Emotion can not only reflect all kinds of human feel-
ings, thoughts and behaviors, but also the psychological and physiological responses produced by various external stimuli. Therefore,
the correct identification of emotion is very important in many fields. The change of emotion will lead to the change of electroen-
cephalogram (EEG) signal. On the contrary, these changes also reflect the change of emotional state. Based on the DEAP database, this
paper extracts the time—domain and frequency—domain features of EEG signals, and reduces the dimension of the features by princi-
pal component analysis (PCA). The weighted KNN algorithm is used for 5-fold cross validation training. Finally, the recognition
accuracy of excited, relaxed, depressed and angry emotions reaches 80%.

Key words: EEG signal ; principal component analysis(PCA) ; time—domain feature ; frequency —domain feature ; weighted KNN
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1
h2 h1
AF3 0.233 0.167 0.561 0.617 0.644 0.638 0.598 0.200 0.041 0.213 0.089 0.021 4.021
F3 0.009 0.016 0.066 0.046 0.037 0.027 0.056 0.115 0.062 0.272 0.137 0.023 0.867
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FC5 0.099 0.012 0.234 0.371 0.329 0.298 0.307 0.292 0.006 0.292 0.207 0.073 2.518
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