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SAR image classification with limited labeled data
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Abstract: The performance of supervised Polarimetric Synthetic Aperture Radar

(PolSAR) image terrain classification heavily relies on

ground—truth samples, which could be a problem when the sample size is small or few labels are imprecise. Since PolSAR image has

spatial and spectral information redundancy, spatial neighborhood information can improve the discriminative and robustness of sample

features. In this paper, a polarimetric feature enhancement method is proposed for improving the robustness of data representation.

With the help of a statistical polarimetric HSV color space pseudo—color image generation method and an adaptive superpixel cluster-

ing algorithm, the enhanced feature of each sample can be obtained from both the original sample feature and its corresponding super-

pixel. Experiments with the benchmark datasets show that the proposed method can improve the robustness and accuracy of classifica-

tion results with a small size of ground—truth samples.
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