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MSA-YOLO oil storage tank target detection for remote sensing images
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Abstract: Crude oil, as an important strategic material, plays an important role in many fields such as my country’s economy and
military. This paper proposes an algorithm MSA-YOLO (MultiScale Adaptive YOLO), which is optimized on the basis of the YOLOv4
algorithm, and is experimented based on the remote sensing image dataset mainly based on Jilin—1 optical remote sensing satellite
images , to make identification and classification of oil storage tanks. The algorithm optimization contents include: in order to simplify
the oil storage tank monitoring model and ensure the efficiency of the model, prune the multi —scale identification module in the
network structure of YOLOv4; use the k—means++ clustering algorithm to select the initial anchor frame to accelerate the conver-
gence of the model;use CloU—-NMS -based optimization to further improve inference speed and accuracy. The experimental results
show that compared with YOLOv4, the number of parameters of MSA-YOLO model is reduced by 25.84%; the model size is re-
duced by 62.13%; in the GPU environment of Tesla V100, the training speed of the model is increased by 6 s/epoch, and the in-
ference speed is increased by 15.76 F/s; the average accuracy is 95.65%. At the same time, the MSA-YOLO algorithm shows
more efficient characteristics in the comparative experiments of various general target recognition algorithms. The MSA-YOLO algo-
rithm has universal feasibility for accurate and real —time identification of oil storage tanks, and can provide technical reference for
remote sensing data in the field of energy futures.
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5 MSA-YOLO YOLOv4
Precision/% Recall/% mAP@.5/% Fl-score/% Model-size/MB  Detection—speed/(F/s)  Training—speed/(s/epoch)
YOLOv4 90.35 93.40 95.75 91.85 404 404.41 53.10
MSA-YOLO 89.25 95.20 95.65 92.13 153 420.17 47.00
89.25%  95.20% ,mAP@.5 95.65% , F1—score ,MSA-YOLO 11.90 s/epoch |
92.13% ,Model-size 153 MB,Detection-speed ~ 420.17 F/s, 6.10 s/epoch ,21.90 s/epoch ~ 137.80 s/epoch;  Model -
Training —speed 47 s/epoch YOLOv4 , mAP@.5 size , MSA-YOLO YOLOv3
0.1% ,F1-score  0.28%, ; Model - 36 MB,  EfficientDet—DO0 138 MB,
size 62.13% , Detection —speed 15.76 F/s, 251 MB 17 MB,  EfficientDet—DO
Training —speed 6.1 s/epoch . , MSA-YOLO mAP@.5 14.15% , Detection —
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) MSA-YOLO 13.61 F/s, mAP@.5 MSA -YOLO
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94.10% .95.75% .94.25% .81.50%  95.65% ; Model —size (2)YOLOv3  MSA-YOLO , Model -size
117 MB 404 MB 170 MB 15 MB 153 MB; Detec— Detection —speed ,  mAP@.5  Training —speed
tion —speed 434.78 F/s.404.41 F/s.294.12 F/s ;
268.72 ¥/s  420.17 F/s; Training—speed 58.9 s/epoch . (3)MSA-YOLO EfficientDet-DO
53.1 s/epoch ,68.9 s/epoch . 184.8 s/epoch ~ 47.0 s/epoch , , ,MSA-YOLO
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6
Precision/% Recall/% mAP@.5/% Fl-score/% Model-size/MB  Detection—speed/(F/s) Training—speed/(s/epoch)
YOLOv3 87.65 93.70 94.10 90.57 117 434.78 58.90
YOLOv4 90.35 93.40 95.75 91.85 404 404 .41 53.10
YOLOv5 92.80 93.00 94.25 92.90 170 294.12 68.90
EfficientDet— DO 81.50 81.40 81.50 81.45 15 268.72 184.80
MSA-YOLO 89.25 95.20 95.65 92.13 153 420.17 47.00
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CloU-NMS 91.35 94.40 96.17 92.85
4.2.4
, s 11 5 11
03 0.75 m
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