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Abstract: Massive multiple —input multiple —output(MIMO) systems can effectively improve the spectrum efficiency. When the anten-
na scale gradually tends to infinity, the minimum mean square error (MMSE) detection algorithm can achieve near—optimal detection
performance. However, due to the matrix inversion required in the algorithm, which brings extremely high computational complexity,
it is difficult to implement in a massive MIMO system. The Richardson algorithm can achieve the detection performance of the
MMSE algorithm in an iterative form without matrix inversion, but the algorithm is greatly affected by its relaxation parameters. In
the Richardson algorithm combined with the steepest gradient descent algorithm (SDNSR), the error of the relaxation parameter can
be compensated by the gradient descent algorithm, but the computational complexity is increased. This paper firstly uses the idea of
deep expansion to map the iterative process of SDNSR to a deep detection network (SDNSR-Net); then, by modifying the network
structure and adding trainable parameters, the computational complexity is reduced and the detection accuracy is improved. The ex-
perimental results show that SDNSR—Net is superior to other typical detection algorithms in the case of different signal—to—noise ra-
tios and antenna configurations in the uplink massive MIMO system and can be used as an effective detection scheme in practice.
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