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Abstract: In order to solve the problem of low recognition rate of phase shift keying and quadrature amplitude modulation signals
when using time —frequency image classification under the condition of low signal —to—noise ratio, this paper proposes a method of
signal feature fusion. Firstly, the method calculates the high—order cumulant of the received signal and obtains the one-dimensional
numerical eigenvector. Then, the time —frequency diagram of the received signal is obtained by time —frequency analysis, and the
one —dimensional image feature vector is extracted by convolution neural network. The two kinds of feature vectors are connected to
obtain one—dimensional fusion feature vector. Finally, the fused feature vector is input into the full connection layer and the classi-
fication results are output. The simulation results show that under the condition of about 1 dB, the recognition rate of phase shift
keying and quadrature amplitude modulation signals can be improved by about 10%~30% compared with the method of single im-
age feature.
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