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Student behavior detection algorithm combining lightweight and trapezoidal structure
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2.School of Physics and Telecommunications Engineering , Shaanxi University of Technology , Hanzhong 723000 , China)

Abstract: In order to solve the problem that common target detection algorithms are difficult to apply effectively in classroom sce-
narios, a student behavior detection algorithm combining lightweight and trapezoidal structure is proposed. The algorithm is based on
YOLOv4 architecture, according to the characteristics of target classification and distribution space, a new “trapezoidal” feature fusion
structure is proposed, and combined with the MobileNetv2 idea, the model parameters are optimized to obtain a trapezoidal —Mo-
bileDarknet19 feature extraction network, which not only reduces the computational load of the network, but also improves the work
efficiency. At the same time, it strengthens the information transmission of target features and improves the learning ability of the
model. In the scale detection stage, a five —layer DenseNet network is introduced to enhance the network’s detection ability for
small targets. The experimental results show that the proposed YOLOv4—-ST algorithm is better than the original one. The mAP of
YOLOv4 algorithm is improved by 5.5%. Compared with other mainstream algorithms, it has better practicability in the task of stu-
dent classroom behavior detection.
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