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Fault diagnosis method of solar panel module based on ST-TCN
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Abstract: This paper analyzes the current characteristic curves of photovoltaic modules under different working conditions and finds
that the current data of photovoltaic modules superpose complex performance characteristics and high noise. In order to accurately
diagnose the fault types of photovoltaic modules, a soft thresholding temporal convolutional network (ST—TCN) photovoltaic module
fault diagnosis model is proposed. The ST-TCN network uses the dilated convolution layer, ReLU layer, and Dropout layer of multi-
ple residual modules to extract current numerical and time series features, uses the soft thresholding of residual modules to de-—
noise the extracted features, and finally uses the full connection layer to diagnose and classify the extracted features of residual
modules. The experimental results show that the ST-TCN network has a simple structure, fast convergence, and high accuracy in
fault diagnosis, reaching 92.99%.
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