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Traffic sign’s detection method based on Darknet23 and feature fusion

Du Tingting, Zhong Guoyun,Jiang Jinmao,Ren Weimin
(School of Information Engineering, East China University of Technology, Nanchang 330013, China)

Abstract: Road traffic sign’s detection is one of the important links of intelligent transportation. A detection method based on the
improved YOLOvV3 model by the industry is proposed for the problems of complex background, small targets and slow detection
speed in traffic sign detection.The method used a bidirectional feature pyramid structure to achieve bidirectional fusion of seman-
tic information of low,middle and high level features of images to improve the classification of low-level prediction targets and
the localization of high-level prediction targets. The main feature extraction network of the original model is improved, and the
Darknet23 network is proposed to improve the extraction ability of the network and reduce the computational burden.According
to the characteristics of the target shape, the K-means clustering algorithm for training the appropriate anchor frames and a more
flexible £, _ oy loss function is introduced into the bounding box regression to make the network optimize towards a higher de-
gree of overlap between the prediction boxes and the ground-truth boxes. The experimental results show that the method reaches
86.10% mAP@0.75 and 70.017% mAP@0.5:0.05:0.95 on the CCTSDB dataset, which are 10.17% and 5.656% higher than the
original network, the number of parameters is reduced by 3 622 091 and the speed is improved 8.27 f/s ,which is better than main-
stream detection networks such as SSD and Faster RCNN.

Key words: traffic sign’s detection ; bidirectional feature pyramid ; Darknet23 network ; K-means clustering ; loss function
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