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摘 要：以新能源车载锂电池为研究对象，建立基于回声状态网络（ESN）预测锂电池的荷电状态（SOC）评估模型。

采用交叉验证方法优选回声状态网络参数，以此解决网络模型的参数选择困难。通过带遗忘因子的递归最小二乘法

训练建立的回声状态网络模型，实时更新输出权值矩阵以此提高网络的适应性和精度。通过模型仿真分析验证了预

测算法的可行性，进一步对比分析了所建立的 ESN 预测模型与 BP 神经网络算法、径向基（RBF）网络算法在 UDDS、

US06 和 NYCC 工况条件下的锂电池 SOC 评估预测效果，结果表明所建立的回声状态网络模型方法用于锂电池 SOC

评估预测的性能和效果优于 BP 算法和 RBF 算法，具有较好的应用前景，可以为锂电池 SOC 长期长效预测评估提供

参考。
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Abstract： Taking lithium battery of new energy vehicles as the research object,an echo state network (ESN) model is established 

to predict the state of charge (SOC) of the vehicle's lithium battery. The cross-validation method is used to optimize the param‐

eters of the ESN to solve difficulty to select arameters of the model. The echo state network is trained by recursive least squares 

method with forgetting factors to calculate the output weight matrix so as to improve the adaptability and accuracy of the network.

The feasibility of the prediction algorithm is further analyzed and verified by the model simulation. The research further analyzes 

and compares the predicted SOC of the established ESN model, the BP neural network algorithm and radial basis function (RBF) 

network algorithm under UDDS, US06 and NYCC. The research results show that the established echo state network model is su‐

perior to the BP algorithm and RBF algorithm in estimating the performance and effect of lithium-ion battery SOC evaluation. 

Using ESN model to predict SOC has a good application prospect and can provide a reference for long-term and effective SOC 

prediction of the lithium battery.

Key words： lithium battery；state of charge；echo state network；parameters optimization and selection；cross validation

0　引言

新能源电动汽车锂电池因具有无污染、续航能力强

以及可多次循环使用等优点被广泛应用，锂电池荷电状

态 SOC 的预测研究是新能源汽车领域的关键技术 。

SOC 反映了锂电池的剩余可用电量 [1−2]，准确预测 SOC

对于研究新能源电动汽车的续航里程、锂电池合理充放

电以及电池健康管理等可提供可靠依据 [3]。

锂电池内部化学反应复杂，SOC 的变化受温度、电

池循环使用次数、充放电倍率和老化等多种因素影响，

致使 SOC 预测困难 [4]。常用预测 SOC 的方法主要有：安
* 基 金 项 目 ：国 家 自 然 科 学 基 金（61741126）；广 西 自 然 科 学 基 金

（2022GXNSFAA035533）
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时积分法、开路电压法、内阻法和电池模型法。由于这

些方法存在误差累积较多 [5−6]、应用状态受限 [7−8]、无法

直接检测实际 SOC[9]、参数辨识困难 [10−13]等不足，其应用

场合受到一定限制。

采用交叉验证法对回声状态网络（ESN）的储备池

规模 N、谱半径 SR、输入缩放 IS 和输入位移 IF 进行寻

优，并采用带遗忘因子的递归最小二乘法实时调整网络

输出权值矩阵。为验证 ESN 算法的可行性和优越性，将

ESN 算法在 UDDS 工况下与 BP 算法和 RBF 算法以不同

的训练集和测试集进行仿真对比，进而将以上 3 种算法

在 UDDS、US06 和 NYCC 工况下进行对比分析。

1　ESN建模分析

1.1　原理分析

研究表明，回声状态网络具有储备池神经元丰富、

网络计算量少、神经元连接具有稀疏性、可通过少量输

入随机产生复杂多样的网络状态空间等特点。

如图 1 所示，回声状态网络模型包含 K 个输入单元，

L 个输出单元，储备池规模为 N，网络输入权值矩阵

Win(N×K), 储 备 池 内 部 权 值 矩 阵 W(N×N), 反 馈 权 值 矩

阵 Wback(N×L)。

储备池内部更新状态如式（1）、（2）所示：

x（n + 1）= f（W × x（n））+ W in × u (n + 1) + Wback × y (n ) ) （1）

y (n + 1) = fout (x (n + 1) ,u (n + 1) ,y (n ) ) （2）

式中，u(n)为网络输入向量，n=1,2, … ,M；x(n)为储备池内

部 n 时刻的输入信号 ,n=1,2,… ,N；y(n)为网络输出，n=1,2,

… ,M；f（*）为储备池内部神经元的 S 型激活函数，fout 为

输出节点的线性激活函数。

1.2　ESN参数寻优

基于以上分析，回声状态网络的研究和实施中仍存

在多元参数优化选择的困难，包括储备池神经元规模

N、谱半径 SR、输入缩放 IS、输入位移 IF 和稀疏度 SD，且

参数之间相互独立互不影响。N 反映了储备池规模的

大小，一定范围内 N 增加，网络的非线性处理能力越强，

N 过大将导致网络灾难和计算复杂等问题；谱半径 SR

为储备池内部权值矩阵的最大特征值，当 0<SR<1 时可

确保网络具有回声状态特性；IS 和 IF 为输入信号传递至

储备池前需进行一定的缩放和移动；SD 反映了储备池

神经元的互相连接情况，一般取 2%~10%，当 SD=100%

时，回声状态网络即为传统递归神经网络，储备池为传

统神经网络的隐层结构。假定 N、IS、IF 和 SR 按表 1 所

设定的范围和步长进行变化，则 N 需要变化的次数为 24

次，IS、IF 和 SR 变化的次数为 20 次，若采用穷举法寻

优，则需要做的计算次数为 24×20×20×20=192 000 次，计

算复杂，给网络参数寻优带来了困难。

针对 ESN 参数寻优困难，采用一种基于 K 折交叉验

证的方法来优选网络相关参数，具体实施如下：将采集

到的电池相关数据分为 K 组，其中一组作为测试集，其

他的作为训练集，同时寻优参数以一定的步长变化，经

过 K 次训练和测试，当网络训练和测试结束后，与训练

和测试误差之和最小对应的参数则可认为是最优参数。

研究数据来源于美国高级汽车仿真软件 Advisor，该软

件通过大量人工实验获取电动汽车在美国城市道路复

杂时变工况 UDDS 下车载锂电池实际放电的实时电流、

电压、电池组外表温度以及实际 SOC 值，共 1 598 组数

据，并分为 4 个数据子集，交叉验证中取 K=4，如图 2 所

示进行 4 回合的训练和测试。理论上随着 K 值的增加，

所选取的网络参数更优，但同时也会带来网络计算灾难

等问题，因此 K 值的选取需结合网络的复杂度以及实施

难易程度来选取。

在第一回合中，前 3 个数据子集用以训练模型，另外

一个作为测试集；在第二回合中，则将第 1、2、4 个数据

子集作为训练集，依此类推，经过 4 次训练，4 次测试后

得到测试误差 errortest 和 4 次训练误差 errortrain，求得 Er‐

ror=（errortest+errrortrain）/2,取误差平均值 min(Error)作为

最优解。首先随机产生输入缩放和输入位移的值，IS =

图 1　回声状态网络结构图

表 1　参数设置和步长

参数

N

SR
IS
IF

取值范围

[30,150]
[0,1]
[0,1]
[0,1]

步长

5
0.05
0.05
0.05

图 2　训练集和测试集
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[0.5;0.5;0.5]，IF=[0.1;0.1;0.1]，同时 N 和 SR 分别以如表 1

所示的步长变化，得到最优解如表 2 所示。得到最优训

练误差 0.037 52，测试误差 0.022 76，与之对应的 N=75，

SR=0.4 可认为是最优参数。同理固定 N=75，SR=0.4，再

次进行参数寻优得到 IS=[0.25;0.25;0.25]，IF=[0.55;0.55;

0.55]。经上述计算，4 折交叉验证计算次数为 24×20×4+

20×20×4=3 520 次，相比穷举法计算 192 000 次，4 折交叉

验证的寻优计算效率提高了接近 55 倍。因此 ESN 参数

寻 优 最 终 取 值 分 别 为 N=75，SR=0.4，IS= [0.25; 0.25;

0.25]，IF=[0.55;0.55;0.55]，4 折交叉验证流程图如图 3 所

示。稀疏度 SD 反映了储备池神经元内部连接情况，通

过试验法取得 SD=8%。

2　ESN训练和预测过程分析

车载锂电池 SOC 与锂电池的实时电流、电压存在非

线性时变的关系，且电池组外表温度会影响电池活性，

因此 ESN 输入设定为锂电池实时电流、电压、和电池组

外表温度，SOC 值作为网络输出，网络输出与输入的函

数关系可表述为：

SOC t = f ( It,Vt,Tt ) （3）

因此，ESN 输入节点确定为 K=3，储备池神经元 N=

75,输出节点 L=1。参数设置为：稀疏度 SD=8%，储备池

谱半径 SR=0.4，输入缩放 IS=[0.25;0.25;0.25],输入位移

IF=[0.55;0.55;0.55]。采用带遗忘因子 λ的递归最小二乘

法（RLS）进行网络训练，设所求输出权值矩阵为 Wout，网

络教师监督信号设为 Y(n)。为使得网络输出和教师监督

信号 Y(n) 之间保证误差最小化，则有求解最优的条件

约束：

min 1
M - m + 1

é

ë
êêêê∑
n = m

M

Y (n ) - ∑
i = 1

K

Wout i × x i (n )
ù

û
úúúú

2
（4）

由式 (4)可得网络误差：

E (k ) = Y (n ) - ∑
i = 1

K

Wout i × x i (n ) （5）

引入 RLS 的遗忘因子 λ，则有 J(n)满足：

J（n）= 1
2 ∑
k = 1

n

λn - k E2 (k ) (0 < λ < 1) （6）

RLS 算法遗忘因子 λ的引入会使得 RLS 对所求输出

权值矩阵做出快速反应，使得网络加快了寻求使得 J(n)

最小的权值矩阵 Wout，则可通过求偏导计算出满足式 (4)

的输入权值矩阵：

∂J(n )∂Wout
= 0 （7）

为避免网络训练陷入局部最优，当满足式（7）时，设

定误差阈值。若训练误差小于误差阈值时，输出权值矩

阵，因此误差函数 J(n)取得极值时，达到了设定的误差阈

值，可近似认为所得对应的 Wout 是满足网络最优条件的

输出权值矩阵，由带遗忘因子的 RLS 算法可得 ESN 输出

权值矩阵的更新方程如下：

Wout k + 1 = Wout k + QkE (k ) （8）

其中，Qk 为权值增益矩阵，权值矩阵 Wout 调整流程图如

图 4 所示。

基于以上 ESN 学习算法的分析，ESN 预测 SOC 实施

步骤如下：

(1)确定网络输入和输出节点；.

(2)网络初始化，随机设定输入权值矩阵，储备池内

部权值矩阵，矩阵元素取值在 [-1,1]之间随机产生，并保

持不变；

(3)将初始采集数据分为 4 份进行训练和测试，交叉

验证确定最优参数 N、SR、IS、IF，试验法确定 SD；

(4)采用带遗忘因子的递归最小二乘法进行网络学

习，实时更新输出权值矩阵；

图 4　输出权值更新流程图
图 3　4 折交叉验证流程图

表 2　参数选取

初始值

IS=[0.5;0.5;05]
IF=[0.1;0.1;0.1]

N=75
SR=0.4

最优参数

N=75
SR=0.4

IS=[0.25;0.25;0.25]
IF=[0.55;0.55;0.55]

errortrain

0.037 52

0.015 87

errortest

0.022 76

0.035 18
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(5)判断网络学习是否达到终止条件（达到设定误差

Error 或步数），如果没达到，返回步骤（4），继续加载训

练集和测试集进行学习，直到满足条件终止；

(6)将训练好的回声状态网络输入采集的最新数据

进行预测，输出预测 SOC 值。

3　模型验证与仿真分析

回声状态网络经 4 折交叉验证参数寻优和网络模型

建立完成后，以美国高级汽车仿真软件 Advisor 在 Mat‐

lab 环境下采集到 UDDS、US06 和 NYCC 3 个工况下的

电流、电压和温度作为网络输入，采集的 SOC 为神经网

络教师监督信号，工况数据分别为 1 598 组、389 组和

1 795 组。为验证交叉验证选取网络参数的可靠性以及

回声状态网络模型的可行性和优越性，根据 Kolmogorov

定理 [14−15]建立经典 3 层前向 BP 神经网络模型和 RBF 神

经网络模型用于电池 SOC 的预测。将 ESN 算法与 BP 算

法和 RBF 算法在多工况不同训练集和测试集下进行对

比分析。为比较 ESN、BP 算法和 RBF 算法的性能，分别

使用 479 组、639 组和 700 组 UDDS 工况数据进行训练，

得到的预测曲线每间隔 63 s 作图，如图 5~图 7 所示，仿

真结果如表 3 所示。

图 7　700 组数据训练的 SOC 预测结果和误差

图 5　479 组数据训练的 SOC 预测结果和误差

图 6　639 组数据训练的 SOC 预测结果和误差

48

《电子技术应用》http://www.chinaaet.com

《电子技术应用》http://www.chinaaet.com



Measurement Control Technology and Instruments

测控技术与仪器仪表

《电子技术应用》 2023年 第49卷 第1期

如图 5~图 7 和表 3 所示，当使用 479 组数据进行训

练时，ESN 算法和 RBF 算法预测精度约控制在 8% 以内，

且误差波动幅度大；BP 算法误差约控制在 6% 以内 ,误差

波动较为明显；3 种算法预测精度偏低，主要原因在于网

络学习数据不充分导致网络泛化能力不强。对比 3 种算

法的预测时间可以发现ESN的预测时间最短，为 1.259 4 s；

如图 6 所示，当训练数据为 639 组时，ESN 算法的精度在

6% 以内，BP 算法精度在 8% 以内，RBF 算法误差在 5%

以内，随着训练数据的增加，ESN 算法和 RBF 算法在误

差上相比 479 组训练集的结果有一定的改善，但随着训

练数据的增加，网络预测时间也有一定的增加；如图 7 所

示，当训练数据为 700 组时，ESN 网络预测最大误差 Max 

error 为 0.048 2，标准均方根误差 NRMSE 为 0.031 3，相比

前两次训练预测的结果，算法在预测精度上有提升。在

预测时间上，ESN 算法和 RBF 算法分别为 0.794 7 s 和

1.468 5 s，相比训练数据集为 479 组和 639 组得到的预

测结果，ESN 算法预测时间和 RBF 算法预测时间随着网

络训练数据的增加在预测速度上无明显的改进。BP 算

法在预测精度上和预测时间无明显的改善，且 BP 网络

误差呈现出波动幅度过大，多个时间点出现较大的预测

偏差，最大误差达到 0.076 3。因此 BP 算法在预测精度

和预测效率上相对于 ESN 算法和 RBF 算法而言较低。

综合以上分析，在 UDDS 工况下，ESN 算法性能优于 BP

算法，ESN 在网络预测精度上优势明显，预测效率高。

为进一步分析所建立回声状态网络模型用来预测

SOC 的特性优势，将回声状态网络模型 ESN、BP 算法和

径向基 RBF 网络算法分别在 UDDS、US06 和 NYCC 3 种

工况下进行预测 ,得到的结果分别间隔 63 s、15 s 和 60 s

取值作图，则 SOC 的预测结果和误差如图 8~图 10 所示。

3 种工况预测性能对比如表 4 所示。

图 8 中，在 UDDS 工况下数据为 1 598 组时，ESN 算

法预测 SOC 的最大误差不超过 2%,相比 BP 算法和 RBF

算法，精度更高；图 9 中 US06 工况下，工况数据为 389 组

时，可以看出 ESN 算法预测 SOC 的误差波动幅度变化

平缓，最大误差控制在 4% 以内；图 10 中，ESN 网络在

NYCC 工况下预测误差不超过 3%。因此在不同工况

下，从精度上考虑，ESN 算法优于 BP 算法和 RBF 算法。

在计算效率上，由表 4 分析可知 ESN 算法在 UDDS、

US06和NYCC工况下，ESN算法预测时间分别为 0.691 9 s、

0.354 6 s 和 1.233 5 s，预测时间比 BP 算法和 RBF 算法

短，这主要是由于 ESN 模型计算量小，只需计算输出权

值矩阵，其他矩阵在网络初始化后固定不变。

在网络泛化能力上，ESN 在 3 种不同工况下，SOC 预

测误差波动较稳定，预测精度较高，且在不同的训练数

据下也呈现出相对稳定的预测精度。BP 算法在不同工

况下预测 SOC，初始数据样本越少，网络预测误差波动

越大，在 US06 工况下，网络最大误差达到 0.117 2。因

此，BP 算法存在预测性能差、泛化能力弱以及对样本数

据依赖性强等缺陷。RBF 算法在 3 种工况下预测时间最

长，预测 SOC 精度相比 ESN 算法低，网络预测 SOC 值和

实际 SOC 值之间的误差在多个时间点出现比较高的误

差，在不同工况下预测 SOC，RBF 算法呈现出的较弱的

泛化能力，因此 ESN 算法性能优于 RBF 算法。

表 3　ESN、BP 和 RBF 算法预测性能对比

算法

ESN
BP

RBF
ESN
BP

RBF
ESN
BP

RBF

训练 /测试

479/1 119

639/959

700/898

Max error
0.078 6
0.061 7
0.080 0
0.059 0
0.079 8
0.059 9
0.048 2
0.076 3
0.046 9

NRMSE
0.043 3
0.042
0.054 6
0.032 5
0.051 2
0.061 9
0.031 3
0.087 4
0.039 5

时间 /s
1.259 4
1.789 5
1.671 5
1.354 8
1.593 3
1.548 6
0.794 7
1.854 2
1.468 5

图 8　UDDS 工况的 SOC 预测结果和误差
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4　结论

研究结果表明，所建立的回声状态网络模型预测锂

离子电池 SOC 在效率和预测精度上优于 BP 算法和 RBF

算法，为研究电池 SOC 的预测领域提供了一种可行的

方法。

回声状态网络（ESN）预测电池 SOC 具有预测精度

高、计算量小、网络预测速度快等优点，克服了传统神经

网络隐层节点难以确定和计算量大等缺陷，得到了良好

的仿真预测效果，验证了该模型的可行性，具有良好的

应用前景。随着历史数据的积累和仿真手段的创新，预

测电池 SOC 的精度将不断提高，也会有越来越多的模型

创建出来，将作为后续研究的努力方向。
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