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Abstract: Aiming at the problem that the accuracy of text emotion classification of online comment is not high, an improved
model based on BERT and bidirectional gated recurrent unit (BiGRU) is proposed. The word vector representation is carried out
by using the BERT model which can represent the rich semantic features of the text. The classification effect of the model is im-
proved by combining the BiGRU neural network which can retain the text context related information for a long time. On this ba-
sis, the attention mechanism is introduced, to highlight the weight of emotional words which can better express the classification
results in the text, and improve the accuracy of emotional classification. The above model was tested on Acllmdb_v1 data set and
hotel reviews data set, which are public data set. The experimental results show that the model achieves good performance in
both Chinese and English text emotion classification tasks.
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i 28 ) 4% (Recurrent Neural Networks, RNN) HE fif It iX
A 0] 8, Socher % A 0K RNN B T SCAR % B 4 2%,
RNN 7873 2% J& 1 /a) o i 25 40 47 2, (B 7E Ak B e 51 B4l
i} % A . Schmidhuber™ % F RNN #2 1 7 K i B i
1Z (Long Short-Term Memory, LSTM) W 4% , ‘& G W% 4 4L
fife e RNN [ 6 32 3 O FIBS B 2 E 19 0] 8 . Graves 45
NVE K B LSTM W 2% FH T SC A 4y 25, 5 5
LSTM #5584 e , XL LSTM AT LA B 4 4l 3 48 SC AR i XL
6] i L. Cho 48 AUV T '] #51 35 51 5T (Gated Recur-
rent Unit, GRU), GRU A0 % T LSTM 15 54 25 #4) 57 Jin fif 5.,
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TR IR B ) Ty ik AT 43 2 B G ek AL A AR T TR 2R
XSG Ty W AR AR WS T SCAS (Y S5 R AR A R SCfE
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Word2Vec!"'! (Word to Vector) , & ¥ #i i (1) 1] m] 2 B
Sk B % ] ) fe L i B R BUE B OR R % Word2 Vee £5]
R4y R T 3% 25 6] 48 5% 7 CBOW (Continuous Bag-Of-
Words Model) #1 Skip-Gram (Continuous Skip-gram
Model) % %1 . Pennington %5 A" 4 1! T Glove ( Global
Vectors ) 5% 71 >k fif $ Word2Vec A~ BE 4l 42 SC A< 4 7y 15 2
[y ) L, {H J& Glove #5 #Y W A7 2% J& 5L 1A 3 SCTE A [ i B8
T W& AR . Devlin %8 A 42 HF T BERT!" (Bidirec-
tional Encoder Representations from Transformer) 5 7l |
‘B A ] £ 2 W) Transformer % % 4% , AJ LA 78 73 42 9 O 4
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AT SR A SCASTE SR FR A RE 1, BERT 5 AU 42
T WA YR AE 5, — A 2 WO T B (Masked
Language Model , MLM) , XJ /a] o1 fy & 43 6] I ( token )
A7 Wit BLHE W, AR JS TN 4 O W Y token s O3 — &R —
/) 7 ( Next Sentence Prediction, NSP) , 11 #5 % JH f# /)
T 54 Z Y O& &, DT BE A b 8 B S A A R 4y 2
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HE BB

-

2 GRU %ty A
GRU H 88 4b B 2 m] B [8] J72 8], 1l SCAR A 1R S0fF 8

FBRHE R, IR I AR SC2R U] GRU (BiGRU) W 4%, Bl &
T~ GRU W 45 3 £ B — 18] B9 A J SCHR &R

http://www.chinaaet.com



http://www.chinaaet.com

ATLERE L]

K1 BHHAE

24 WE ]
x, iy A B
h, GRU e 4
h, e 1 B R 25
r ]
z, T

2.3 BERT-BiGRU &

AR SCHE Y — Bl L BERT 1B A 1) ] 5 4 R, I X i)
GRU [ £ AT = 24 (9 55 1E $2 BU Y BERT-BiGRU SC A 1
SR Ay Y S5 R I 3 R .

fully connected
SR
I concat I | concal |
\
A &

BiGRU

FEIUREAIE

BERT
Il 53] )

ARG A N ;
&3 BBG XA B F L M A

¥ 28 3k BERT #5545 21 (1% SC A 3] (] &2 5040 X, 5 A
F| GRU M 45, 30 1 r, F 2, 3 5] 928 ) D BRORCIR 25 R, 2 b,
IS . A TTHRITIHENT .

rr=0(Wx,+Uh,_,) €))
z,=0(W.x, +Uh,_,) 2)
i;,, = tanh (Wx, + U(r, h,_,)) 3)
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SCARNE A 25 Hh o A = 1 HL ] ( Attention model )
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A BH AR S A
OB epochs 7
v 2 5] % 2x107%
I dropout 0.5
2 PR AL Cross—Entropy
4 Pk Bk k2% SGD
PR e A Bl AR B ] ) R TR R B A ] ) AR S
A A =N — — +
Kiﬁjajczmmﬂm%é:ro i Ae= TP T TN FPTEN ©)
(3) 44 1) ) 5 7 i A B BiIGRU W 4% th 347 5 1F 42 TP
LU 15 1 A i P= 1o (19)
(4) 38 3o Vi 2% 73 L) R S0 A B 11 Bt 53 e AR I B R= (an
+
*X{E: (o] i B 2PR
(5) K e 245 B 59 SCA HRAE 18] 2 B A %) Softmax B "= iR (12)

B AR B SCAS 19 fe 24 IO 2R 2

3 XWE LM
3.1 LWEE

ARSI L B AN 2 TR .

A2 FHRERE
% 4 PR A5 i
BAERS 64 13 Windows10
Ab 38 2% Intel Core i7-8550U
WAF/GB 12
AR IE Python
TR 2% 2] HE 48 TensorFlow

AR 335k H Acllmdb_v1 FE JE W€ P A~ 2 JF 508 42
PEAT B AE . Ho P, Acllmdb vl & 3¢ SC &4l 4, 3
42 455 ZR B0 5 W VRIS 2 b SCRoHE 4 L A 10 000 S5
Bl o K BOHE B A BRI AT I R 22 T, SR AR
B EATVE Uk R B AT AT A5 R IR A Uk A o R e R
ASCIL F£F , 22 & $ie 1R 8:2 (1% He 131 6 AL ¥ B30 48 % 43
I 25 5 R A, ARSI 4 1 0 n 2 3 TR o S B AR AR
SR 4 FTR .

%3 HEEX HHA

o TP 3 7 A5 280 T30 1E B %) 1E FE AR 0, TN R 7R
TR E A B9 AR AR B e, FP 38 s A5 760 0 00 68 1% A1) £ R
A K, FN 3R 75 B0 R0 T 485 2% 0 IE AR A B0 L F ) R RS B
A R B I ACE 1
32 XWHREHMH

T 56 5% E BERT ia] [] &% 455 A1 (%9 2R |, 78 Acllmdb_v1
B 95 4 % BERT . Word2Vec il Glove 3 Fif 45 551 yE F7 X
Lo B 17 T SCAS B A 313X LA ) ) a4 AN op A B S A
SCARAE 1 18] ) 22, AR 5 O e oK i Ak U2 RN i 2 1S F
T AW R R EE 0L . SE IS VE A0 48 A 1R OHE B R R P
18, LI 45 F 2k 5 frs .

A5 ARRAA®ERAEELERTIL (%)

][] A A 7R MRS F1-Score
Word2Vec 85.24 85.11
Glove 88.02 88.12
BERT 90.32 90.41

B 4 X5y 1E 1A i )
Pl S 17 064 16 900
Acllmdb_v1 :
elimdbv 1 LGS PIRENES 4266 4225
T A VeSS 5 600 2 400
P R PIRENES 1 400 600

7R 3O BA R 3445 4% - 5% A, (accuracy ) KB
# P(precision) . 44 [l % R(recall) fil F, | J& (F1-Socre).
X
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MUE A K5k B , BERT B B T Word2Vec #1 Glove,
K E] T 90.32%, Lt Glove # # T 2.3%, Ll Word2Vec #2 5
T 5.08%; F, {fi J7 10 , BERT it £t F H: Ath 97 Foft 37 i) 2 A
AU, PR AR SR BERT J) [ gt A5 76

$2 T Ok 90 IE AR SCU AR A A b L 2 5 Sk
[14]H JLFR 5 A58 43 510 76 Acllmdb_v1 FIE JE 3 38 5k
P4 B AEAT X LG, SC IR A5 R 3k 6 B o A% AR AR
W\j{]:

(1)BERT #5 74 | 1 $2 F F§ BERT & & A4 il &% A5 XA
T SCRFAE (9 4] 1) 5 54T 18 A AT 55

(2)BERT-CNN #5 % | 38 i BERT #5 74 3R £5 1] i) 12, 2R
FH CNN W 25 8 47 1 2
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(3)BERT-RNN 5 A | 3l 11 BERT A5 A 3 145 17 [r] o , >R
JH RNN ¥ 2 JE 47 Y1 25 5

(4)BERT-BiGRU # # | #F BERT #5 % () 3 fili 1% J
BiGRU W 45 i 47 Il 4 5

(5)BERT-BiGRU-attention 1 7
BiGRU # 8, 5| A VEZE 3L .

, i ¥k ) BERT-

k6 FHER (%)
. ) " " F1-
YGRS T TR R dnE
Score
BERT 90.32  90.41 90.42  90.41
BERT-CNN 91.18 91.23  91.08 91.15
Acllmdb BERT-RNN 91.96 91.85 91.26 91.55
_vl BERT-BiGRU 93.52 92.57 92.40 92.48
BERT-BiGRU-
) 94.87 94.53 94.56 94.54
attention
BERT 90.11  90.13  90.21 90.17
BERT-CNN 90.26  89.01  88.53 88.77
. . BERT-RNN 91.06 90.41 90.47 90.44
5 PF IS
BERT-BiGRU 92.42  90.57 90.70 90.63
BERT-BiGRU-
) 93.02 92,53 92.61 92.57
attention

WE W % J7 1, 7E Acllmdb vl % 48 4 I+, BERT-
BiGRU iA 3| T 93.52% , #H%¢ T BERT-CNN #l BERT-RNN
WA 4% F+ , BERT-BiGRU-attention 5% % ¥ iy 28 3/F — 25 #2
1 1.35% ; 7R )5 P18 8048 % |, BERT-BiGRU /%
WARIEF T 92.42% , FHAL T H 41 {f J BERT A AL 2 5 1
2.31% , BERT-BiGRU-attention #F — 45 #2 2 3 93.02% .

F B BE S L A 4 Tl b B2 BOAS i 5 R0 4 R 7E A
B4 |, A % i B9 BERT-BiGRU 1 BERT-BiGRU-
attention #4 #%1 F f P BE 40 3L AN BERT #5 BUAR A5 — & T2 )
4R R o TR /N BT I TE I BPE R L, MERE R E R i
Acllmdb_v1 £ 4 48, J2& B g /NEROH 1 00 T, o5 Kt Ak 2
R AR B A B — R[] 0, 5 8 BERT-CNN 230 2880 SR R R
N o BERT-RNN 42580 S F BERT-CNN, A 25 RNN
fiE % fift Yo SCAS FE %1 W] 8 . BERT-BiGRU % i Uf , & fig
P8R SCA ) 53] 22 8] ) R SO B B $E T IRk
Ho TR 7 Ak 2 AR SCA RN Y R B A B A [
AOAAR | XoF doc 2815 R AR 1 7™ AE AN [m) 2 B8 1) 5% W), BB 0% 2%
fiff S5e At AR AR B F O AR BURR AE B — B B, i — 2B 42
e AT A AR
4 #ig

A SCHEF BERT #l Il 2538 5 ALY, 45 & BiGRU # &
I 2% R 2 S B BE T T — il IR 46 AR A SR 2 A R
BERT-BiGRU-attention . % 5 %! fifi H] BERT 2k A i 4] it
fr A BiGRU W £ , 38 &2 78 3% 77 MLl XF BIGRU W) 2% 4 B
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