《电子技术应用》

基于FPGA的可消除高频非线性的动态分频鉴相器

2017年电子技术应用第12期
杨三三1,贾豫东1,张晓青1,杨 博2
(1.北京信息科技大学 光电测试技术北京市重点实验室,北京100192; 2.国防科学技术大学 电子科学与工程学院,湖南 长沙410073)
摘要: 提出了一种可消除高频非线性的动态分频鉴相器的结构和实现方法,输入信号经波形变换后,利用FPGA进行分频,并通过8位拨码开关来设置1~255不同的分频系数,分频后通过数字鉴相器、低通滤波器和调理放大电路实现鉴相。这种设计不仅大大提高了鉴相范围和灵敏度,而且消除了高频非线性化现象。实验表明,该数字鉴相器输入频率范围200 kHz~100 MHz,鉴相范围-510 π~+510 π,线性度优于±1.5%,同时具有根据不同应用需求进行动态分频的特点。

Phase discriminator with dynamic frequency division for eliminating nonlinearity at high frequency based on FPGA

Yang Sansan1,Jia Yudong1,Zhang Xiaoqing1,Yang Bo2
(1.Beijing Key Laboratory for Opto-Electronic Measurement Technology,Beijing Information Science and Technology University, Beijing 100192,China; 2.College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China)
Abstract: This paper presents the structure and implementation of a phase detector with dynamic frequency division for eliminating nonlinearity at high frequency. After the waveform transformation, the frequency of input signal is divided into 1~255 different parts by FPGA, and the division factor can be set by 8 bit dial switch. After frequency division, digital phase detector, low pass filter and modulation and amplifying circuit, the function of phase discrimination is realized. The discrimination range and sensitivity are improved greatly and the nonlinear phenomenon at high frequency is also eliminated. The experiment results show that the input ranges of frequency is 200 kHz~100 MHz, the phase can reach -510 π~+510 π and linearity is better than ±1.5% for the phase detector. Simultaneously, the dynamic frequency division is realized according to different application requirements.

杨三三1,贾豫东1,张晓青1,杨  博2

(1.北京信息科技大学 光电测试技术北京市重点实验室,北京100192;

2.国防科学技术大学 电子科学与工程学院,湖南 长沙410073)



    中图分类号: TN763.3

    文献标识码: A

    DOI:10.16157/j.issn.0258-7998.172015


    中文引用格式: 杨三三,贾豫东,张晓青,等. 基于FPGA的可消除高频非线性的动态分频鉴相器[J].电子技术应用,2017,43(12):55-58.

    英文引用格式: Yang Sansan,Jia Yudong,Zhang Xiaoqing,et al. Phase discriminator with dynamic frequency division for eliminating nonlinearity at high frequency based on FPGA[J].Application of Electronic Technique,2017,43(12):55-58.

0 引言

    鉴相技术是电力电子系统和测试控制中的关键技术之一,在仪器仪表、通信、导航定位、研究网络相频特性和锁相环等测试中,经常需要测量两列同频信号的相位差。相较于模拟鉴相器,数字鉴相器的突出优点在于提供的鉴相范围更宽,从而使鉴相更可靠,适用范围也更广。

    传统的鉴相方法主要有基于异或门的测量法和直线近似法等[1-3],这些鉴相方法鉴相范围窄、输入频率低、线性度差,往往存在较大误差。近年来,常用的数字鉴相方法有相关分析法、频谱分析法等[4-6],其优点在于反应快和精度高,但算法相对复杂,鉴相范围窄,输入频率也相对不高。AD9901在数字鉴相方面运用的相对较多,但鉴相范围窄,同时在高频时会出现非线性化现象[7]。本文设计了一种基于FPGA的数字鉴相器,既能消除高频非线性,又能实现动态分频和宽范围鉴相。

1 系统原理与组成

    数字鉴相器AD9901可实现线性相位检测范围,但是在高频下AD9901会出现较为明显的非线性化现象。这种非线性鉴相区的产生,是由于在线性检测范围两端,参考信号和待测输入信号相位接近,数字鉴相器输出脉宽变得很窄和鉴相器摆速增大,从而导致相位增益迅速向鉴频区(即最高和最低值处)拉近,而出现非线性化现象。其线性鉴相区间d为[8]

ck2-gs1-3.gif

    由式(1)~式(3)可知,频率越高,线性鉴相区间越窄。在高频段通过FPGA分频把频率降低,可展宽线性区间,即可解决高频非线性问题,同时鉴相范围也大大提高。输入信号和参考信号经过数字鉴相器系统后,即可得到不同相位差所对应的直流电压。数字鉴相器系统原理框图如图1所示。

ck2-t1.gif

2 数字鉴相器设计

2.1 波形变换

    本设计采用了超高速比较器AD8611,它的传输延迟只有4 ns,极大地减小了正弦波变换为方波的时间误差,其波形变换电路如图2所示。

ck2-t2.gif

2.2 FPGA分频

    通过FPGA进行可编程分频设计,可以灵活改变分频系数,分频系数大且输入频率满足设计需求。通过8位拨码开关来设置分频系数,分频系数在1~255范围内变化,其FPGA分频流程图如图3所示。

ck2-t3.gif

    本FPGA分频设计可以实现任意整数分频,其分频原理如下:(1)偶数分频:设计一个模N/2计数器,对输入信号进行下降沿触发计数,当计数值为N/2-1时输出信号翻转;(2)奇数分频:采用两个计数器分别对输入信号进行上升沿和下降沿模N触发计数,且各自控制产生一个N分频的电平信号。一个计数器进行上升沿计数,当计数值为(N+1)/2时输出信号翻转,再当计数器清零时,再次翻转就可得到一个占空比非50%的N分频信号。同时另外一个计数器进行下降沿相同操作,得到另外一个N分频信号。这两个占空比非50%的N分频信号进行相或运算,即可得到占空比为50%的N分频信号。

    使用ModelSim对FPGA分频进行功能仿真,设定输入信号频率为10 MHz,20分频后频率为500 kHz;25分频后频率为400 kHz,分别如图4(a)、图4(b)所示。

ck2-t4.gif

2.3 数字鉴相

    AD9901能够直接比较最高200 MHz的相位或频率输入信号。当输入信号同频率时,就工作在鉴相模式下,其数字鉴相电路如图5所示。输出占空比θ在-2π~0范围内随相位差ck2-t4-x1.gif线性增加,其输出占空比θ为:

ck2-gs4-6.gif

ck2-t5.gif

2.4 低通滤波

    为了得到AD9901输出的直流电平均值,需采用低通滤波器来消除噪声和信号的交流分量。同时为了减小和抑制50 Hz工频干扰的影响,设计了一个四阶无源RLC巴特沃斯低通滤波器[9],其电路如图6所示。

ck2-t6.gif

    通过Multisim软件对巴特沃斯低通滤波器的滤波性能进行仿真分析,其幅频特性曲线如图7所示。从图中可以看出,其截止频率大约为41 Hz,达到设计要求。

ck2-t7.gif

2.5 调理放大

    为了调节AD9901输出经低通滤波后的直流电平的均值范围,采用由三级运算放大器OP07构成的信号调理放大电路,如图8所示。第一级运放构成电压跟随器,对前后级电路起到隔离和缓冲作用;第二级运放构成反向加法器,起到调节零点的作用,最后一级运放构成反向比例放大器,以达到调节相位差变化时输出电压的变化幅度,并满足后续相关电路处理要求。

ck2-t8.gif

3 测试结果与分析

    测试过程中,由信号发生器产生两路同频同幅、不同相位差的正弦信号,其频率为500 kHz,相位差为180°和270°情况下,用示波器观察到AD9901的输出波形,如图9(a)、图9(b)所示。

ck2-t9.gif

    由式(4)可知,在ck2-t4-x1.gif=-180°时,AD9901理论上输出占空比为50%。在ck2-t4-x1.gif=-270°时,AD9901理论上输出占空比为75%(AD9901有正相和倒相输出),实测结果与理论值符合。

    为了测试电路在0°~360°相位差范围内线性情况,设置信号发生器输出频率为10 MHz,然后固定一路相位为0°,另一路相位每6°递增至360°。未分频和20分频情况下,输出电压随相位差变化曲线如图10所示。由式(1)知:未分频情况下,线性区间d=347.04°;20分频情况下,线性区间d=359.35°。由测试数据可知,在0°~6°和354°~360°范围内出现一定程度上的非线性。

ck2-t10.gif

    其线性度:

    ck2-gs7.gif

其中,ΔYmax为校准曲线与拟合直线间的最大偏差,Y为满量程输出。由式(7)可知,未分频情况下,线性度δ=-7.22%。FPGA进行20分频,其线性度δ=-1.11%。由此可知,通过分频,线性区间变宽,非线性得到明显改善,几乎无非线性化现象。

    ck2-gs8.gif

其中,Vo是鉴相器在不同相位差下的输出电压;Vo1是相位差为0°时,经AD9901和低通滤波后得到的直流输出电压;Vbias是通过调节电位器W1得到的电压;Au是放大倍数,是通过调节电位器W2得到的。 

4 结论

    本文针对传统鉴相器鉴相范围窄、输入频率低、线性度不高等问题,提出了一种基于FPGA动态分频和AD9901数字鉴相的方法。本设计鉴相范围宽,输入频率高,能够动态分频,解决了高频非线性化的问题,为后续电路进行处理提供了方便。该鉴相器适用于高频宽范围相位差测量中,在工程中具有一定的参考和实用价值。

参考文献

[1] 叶林,周弘,张洪,等.相位差的几种测量方法和测量精度分析[J].电测与仪表,2006,43(4):11-14.

[2] 贺为婷,裴广利.一种基于FPGA的高精度数字鉴相器[J].科学技术与工程,2012,12(30):8047-8057.

[3] 吴静,金海彬.高准确度的相位差测量方法[J].中国电机工程学报,2010,30(13): 41-45.

[4] 赵中民,习友宝.激光测距中数字鉴相器的设计[J].激光与红外,2015,45(2):133-137.

[5] 沈廷鳌,涂亚庆,刘翔宇,等.基于相关原理的非整周期信号相位差测量算法[J].仪器仪表学报,2014,35(9):2153-2160.

[6] 傅中君,王建宇,周根元,等.基于初相和谐波理论的相位差测量方法[J].电测与仪表,2015,52(23):76-80.

[7] 黄继江,王彦瑜.基于AD9901的高频高精度相位测量仪的研制[J].核电子学与探测技术,2007,27(5):901-904.

[8] Analog Devices Inc.The datasheet of AD9901[Z].1999.

[9] 李瑞.一种新型心电信号检测读取电路的研究与设计[D].重庆:重庆大学,2014.

继续阅读>>